
Digital Logic Circuits
Logic Functions, Logic Gates, Boolean Algebra

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Introduction to Logic Circuits

▪ Logic circuits: the foundations of digital systems
• In smartphones; computers; control systems;

digital communication devices; … (the list is endless)

▪ The smallest unit of digital information is one bit,
represented as a binary value 0 and 1

▪ In a binary logic circuit, the electrical signals
are constrained to two discrete values

• The key to binary circuits dominance is simplicity

• In practice, the two discrete values are implemented
as voltage levels (the supply voltage or the ground)

CS-173, © EPFL, Spring 2025 2

Let’s Talk About…
…Logic circuits, which form
the foundation of digital systems

CS-173, © EPFL, Spring 2025 3

Learning Outcomes

▪ Discover basic digital logic gates and
use them to build logic networks

▪ Describe logic circuit operation through
• Truth tables

• Timing diagrams

▪ Learn Boolean algebra axioms/theorems/properties
• Check logic function equivalence

• Find more efficient logic circuit implementations

CS-173, © EPFL, Spring 2025 4

Quick Outline

▪ Variables and functions
• Single variable

• Two variables

• AND and OR

• NOT

▪ Truth tables

▪ Precedence of operations

CS-173, © EPFL, Spring 2025

▪ Logic gates

▪ Analysis of a logic network

▪ Timing diagram

▪ Cost of a logic circuit

▪ Boolean algebra
• Axioms

• Theorems

• Properties

▪ Venn diagram
5

Variables and Functions

CS-173, © EPFL, Spring 2025 6

The Simplest Binary Logic Element

▪ …a switch that has two states

• Open

• Closed

▪ In practice, implemented as transistors
• A topic of another lecture

CS-173, © EPFL, Spring 2025 7

Two States of a Switch

▪ If controlled by an input
variable , the switch is

• Open if

• Closed if

CS-173, © EPFL, Spring 2025

▪ The symbol for a switch
controlled by an input variable

8

E
X

A
M

P
L

E
S

A Light Controlled by a Single Switch

CS-173, © EPFL, Spring 2025

▪ Simple connection to battery
• Explicit return path connection

▪ Simple connection to battery
• Using a ground connection as

the return path (simplified view)

Ground (GND) Ground (GND)

Power
supply

Power
supply Current Current

9

E
X

A
M

P
L

E
S

▪ When , the switch
is closed, the current flows,
the light is ON

A Light Controlled by a Single Switch
Contd.

CS-173, © EPFL, Spring 2025

Light Light

▪ When , the switch
is open, the current does not
flow, the light is OFF

10

E
X

A
M

P
L

E
S

▪ The output is defined as the state (or condition) of the light,
• If the light is ON, we will say that

• Otherwise,

▪ We can describe the state of the light with a logical expression

▪ We say that is a logic function of the input variable

A Light Controlled by a Single Switch
Logic function

CS-173, © EPFL, Spring 2025 11

Two-Variable Logic Functions
Series and Parallel Connections

▪ Consider the possibility of using two switches to control the light

CS-173, © EPFL, Spring 2025

▪ Parallel connection:

▪ Light will be turned ON if at least one
(the upper or the lower)
of the two switches is closed

▪ Series connection:

▪ Light will be turned ON only
if both (the left and the right)
switches are closed

Logical AND function

Logical OR function

12

Logical AND and OR Functions
Series and Parallel Connections, Contd.

▪ Consider the possibility of using two switches to control the light

CS-173, © EPFL, Spring 2025

▪ Parallel connection:▪ Series connection:

Logical AND function

Logical OR function

AND operator
OR operator

13

E
X

A
M

P
L

E
S

Two-Variable Logic Functions
Series-Parallel Connections

▪ The AND and OR functions are two of the most important logic
functions and can be used (together with some other simple
functions) as building blocks of all logic circuits

• Example: A series-parallel connection of three switches

CS-173, © EPFL, Spring 2025 14

Logic Complement Operation
Inversion

▪ We assumed positive action
occurs when the switch
is closed (x = 1: light ON)

▪ It is equally relevant to consider
the contrary: positive action
occurs when the switch
is open (x = 0: light ON)

▪ Complement (NOT) is the 3rd

most basic logic operation

CS-173, © EPFL, Spring 2025

Logical NOT function

NOT (complement)
operator

Extra resistance ensures
the closed switch

does not short-circuit
the power supply

15

CS-173, © EPFL, Spring 2025 16

Truth Tables

CS-173, © EPFL, Spring 2025 17

▪ Logical operations can be defined in the form of a truth table
• AND

• OR

ORAND

Logic AND and OR Operations
Truth Tables

CS-173, © EPFL, Spring 2025

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

18

AND OR

▪ For logic variables, there are rows in the truth table
• AND

• OR

Logic AND and OR Operations
Truth Tables

CS-173, © EPFL, Spring 2025

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

19

NOT

Logic Complement Operation
Truth Tables

▪ Logical operations can be defined in the form of a truth table
• NOT

CS-173, © EPFL, Spring 2025

0 1

1 0

20

Precedence of Operations

▪ Parentheses can be used to indicate the order of operations

▪ Alternatively, to help the readability of logic expressions by
reducing the number of parentheses, a convention states:

• In the absence of parentheses, operations in a logic expression
must be performed in the order first NOT, then AND, and then OR

• Example:

• First, complements are generated

• Then, the product terms and are formed

• Lastly, the sum of the two product terms is generated

• Note: We can omit the multiplication symbol
CS-173, © EPFL, Spring 2025 21

CS-173, © EPFL, Spring 2025 22

Logic Gates

CS-173, © EPFL, Spring 2025 23

Logic Gates and Networks

▪ AND/OR/NOT can implement logic functions of any complexity

▪ Electronically, the operations are implemented with transistors,
resulting in a circuit called a logic gate

▪ A logic gate has
• One or more inputs

• An output, which is a function of the inputs

▪ To visualize logic circuits (i.e., networks of logic gates),
we draw schematics composed of logic gates

CS-173, © EPFL, Spring 2025 24

NOT gate AND gate OR gate

AND/OR/NOT Graphical Symbols

CS-173, © EPFL, Spring 2025

Inversion symbol
(complement)

25

Buffer

Variants of Single-Input Gates
Inverter, Buffer

CS-173, © EPFL, Spring 2025

▪ Buffer, passes the input to
the output unchanged

▪ Buffer, with input inversion

▪ Inverter, passes the input to
the output after inverting its polarity

▪ Buffer, with in/out inversion

26

Variants of AND Gates
NAND gate

CS-173, © EPFL, Spring 2025

▪ AND gate, basic

▪ AND gate, one input inverted

▪ NAND gate, equiv. to AND gate
with the output inverted

▪ AND gate, both inputs inverted

27

Variants of OR Gates
NOR gate

CS-173, © EPFL, Spring 2025

▪ OR gate, basic

▪ OR gate, one input inverted

▪ NOR gate, equiv. to OR gate
with the output inverted

▪ OR gate, both inputs inverted

28

E
X

A
M

P
L

E
S

Example Logic Network

▪ AND/OR/NOT can implement logic functions of any complexity

CS-173, © EPFL, Spring 2025

0 0 1

0 1 0

1 0 0

1 1 1

29

CS-173, © EPFL, Spring 2025 30

Analysis of a Logic Network

CS-173, © EPFL, Spring 2025 31

E
X

A
M

P
L

E
S

Analysis of a Logic Network

▪ Example logic network
• The sequence of input values in the truth table visualized in the network

• Any sequence can be visualized in a timing diagram

CS-173, © EPFL, Spring 2025

0 0 1 1 0

0 1 1 1 0

1 0 0 0 0

1 1 1 0 1

0→0→1→1

0→1→0→1

1→1→0→0

0→0→0→1

1→1→0→1

32

0

0

0

0

0

0

0

0

0

0

1 1

1 1

1 1

1

1 1 1

Timing Diagram

▪ The timing diagram shows the changes in waveforms of the internal
signals of a logic network and its outputs resulting from the inputs
changing their values over time

▪ Note: In reality, transitions between
logical levels take some time and
gates may have different delays

CS-173, © EPFL, Spring 2025

0→0→1→1

0→1→0→1

1→1→0→0

0→0→0→1

1→1→0→1

Time 33

Cost of a Logic Circuit

▪ The total cost of a logic circuit is typically defined as the total
number of gates plus the total number of gate inputs

• Each logic gate (AND, OR, NOT, etc.) contributes to the cost

• More inputs to gates often mean larger, more costly gates

• In simplified cost models, only the number of gates might be considered

• In detailed cost models, weights may be assigned to different types of
gates, depending on their complexity or physical implementation

CS-173, © EPFL, Spring 2025 34

▪ A logic function can be implemented with a variety of different
logic networks of different cost

▪ The above two networks are functionally equivalent

• For the same input sequence, they produce the same output sequence

Functionally Equivalent Networks

CS-173, © EPFL, Spring 2025

0→0→1→1

0→1→0→1

1→1→0→0

0→0→0→1

1→1→0→1

0→0→1→1

0→1→0→1

1→1→0→0

1→1→0→1

35

How To Check for Equivalence?

▪ Two logic networks are equivalent if
• Their truth tables are the same (perfect induction)

• There exists a sequence of algebraic manipulations to transform
one logic expression to the other

• These algebraic manipulations are defined as Boolean algebra

• Their Venn diagrams are the same

CS-173, © EPFL, Spring 2025 36

How To Find The Best Equivalent Network?

▪ Logic function can be implemented with a variety of different
networks. How does one find the best (simplest, least costly)?

▪ The process of finding the best equivalent logical expression
describing a logic network is called minimization

• Approach 1: Apply a sequence of algebraic transformation
• Not always obvious when to apply which transformation, tedious, impractical

• Approach 2: Use Karnaugh maps (an alternative to the truth table)
• Simpler, but quickly becomes unmanageable by hand (up to 4 inputs acceptable)

• Approach 3: Automated techniques in synthesis software tools

CS-173, © EPFL, Spring 2025

Out of scope

37

https://www.eetimes.com/karnaugh-maps-101/

Logic Circuit Simplification

▪ Online resource on logic circuit simplification using Karnaugh
maps for enthusiasts: http://www.32x8.com/index.html

CS-173, © EPFL, Spring 2025

Out of scope

0→0→1→1

0→1→0→1

1→1→0→0

1→1→0→1

38

http://www.32x8.com/index.html

CS-173, © EPFL, Spring 2025 39

Boolean Algebra

CS-173, © EPFL, Spring 2025 40

A Bit of History

▪ In 1849, George Boole published a scheme for the algebraic
description of processes involved in logical thought and reasoning

▪ This scheme and its refinements became known as Boolean algebra

▪ In the late 1930s, Claude Shannon showed that Boolean algebra
provides an effective means of describing circuits built with switches

• Therefore, Boolean algebra can be used to describe logic circuits

▪ Boolean algebra is a powerful technique for designing and analyzing
logic circuits; it is the foundation for our modern digital technology

CS-173, © EPFL, Spring 2025 41

Axioms
Boolean Algebra

▪ Like any algebra, Boolean algebra is based on a set of rules derived from
a small number of basic assumptions (i.e., axioms)

▪ Let us assume that Boolean algebra involves elements that take on
one of the two binary values. Assume the following axioms are true:

▪ From the axioms, we can define some rules (i.e., theorems) for dealing
with single Boolean variables

CS-173, © EPFL, Spring 2025 42

Axioms
Analogy with Logic Gates

CS-173, © EPFL, Spring 2025 43

Single-Variable Theorems
Boolean Algebra

▪ If is a Boolean variable, then the following theorems hold:

▪ Theorems grouped in pairs, emphasizing the principle of duality
• Dual form is obtained by replacing all + operators with · operators, and

vice versa; and by replacing all 0s with 1s, and vice versa

▪ To prove the theorems, apply perfect induction (i.e., substitute
the variable with 1 or 0) and use the axioms

CS-173, © EPFL, Spring 2025 44

Single-Variable Theorems
Analogy with Logic Gates

CS-173, © EPFL, Spring 2025 45

E
X

A
M

P
L

E
S

▪ Let us prove the validity of theorem

▪ Perfect induction:
• : the theorem states

This is true according to axiom 1a.

• : the theorem states
This is true according to axiom 3a.

Single-Variable Theorem Proof
Using Perfect induction

CS-173, © EPFL, Spring 2025

AND

0 0 0

0 1 0

1 0 0

1 1 1

Recall the
truth table

46

Two- and Three-Variable Properties
Boolean Algebra

▪ Given three Boolean variables, the following properties hold

CS-173, © EPFL, Spring 2025

Commutative Associative Distributive

47

Two- and Three-Variable Properties
Analogy with Logic Gates

CS-173, © EPFL, Spring 2025

Commutative

Associative

Distributive

48

E
X

A
M

P
L

E
S

Checking the Validity of a Logic Equation
Using Boolean Algebra

▪ Let us prove the validity of the following logic equation

CS-173, © EPFL, Spring 2025

Distributive

Commutative

49

E
X

A
M

P
L

E
S

(8a)

(12a)

(12a)

Checking the Validity of a Logic Equation
Without truth tables and Venn diagrams

▪ Let us prove the validity of the following logic equation

▪ Let us manipulate the left-hand side (LHS)

▪ The result is exactly the right-hand side (RHS)

CS-173, © EPFL, Spring 2025

Distributive

Commutative
(6b)

(10a, 10b)

50

What’s the Point…?
… of Axioms, Theorems, Properties

▪ A: The purpose of the axioms, theorems, and properties in
Boolean Algebra is to perform algebraic transformations to do

• Check for equivalence
• Find if two logical expressions (i.e., logical circuits made of gates) are equivalent

(i.e., perform the same functionality) without evaluating all input possibilities

• Design efficient circuits
• Simplify the logical expression to find a potentially more efficient equivalent variant

(i.e., design a circuit of the same desired functionality but with fewer gates)

CS-173, © EPFL, Spring 2025 51

Two- and Three-Variable Properties, Contd.
Boolean Algebra

▪ Given three Boolean variables, the following properties hold

CS-173, © EPFL, Spring 2025

Absorption (covering) Combining DeMorgan’s theorem

Redundancy Consensus

52

E
X

A
M

P
L

E
S

▪ Prove the validity of the following logic equation

▪ The left-hand side manipulation

Checking the Validity of a Logic Equation
Without truth tables and Venn diagrams

CS-173, © EPFL, Spring 2025

(10b)

(12a)

(8b)

(6a)

Distributive

Commutative

53

E
X

A
M

P
L

E
S

▪ Prove the validity of the following logic equation

▪ The right-hand side manipulation

Checking the Validity of a Logic Equation
Without truth tables and Venn diagrams

CS-173, © EPFL, Spring 2025

(8b)

(6a)

(10b)

Distributive

Commutative

(16a)

(12a)

Redundancy

54

CS-173, © EPFL, Spring 2025 55

The Venn Diagram
Two networks are equivalent if their
Venn diagrams are the same

CS-173, © EPFL, Spring 2025 56

The Venn Diagram

▪ Provides a graphical illustration of various operations and
relations in the algebra of sets

▪ Popularized by John Venn (1834–1923) in the 1880s

CS-173, © EPFL, Spring 2025 57

The Venn Diagram
Shades and Contours

▪ In the diagram, the elements of a set are represented by the area
enclosed by a contour of a circle

• Shaded area where the logical function value = binary 1

• The area within the contour: variable value = binary 1

• The area outside the contour: variable value = binary 0

▪ The union of the shaded areas corresponds to the logical expression
CS-173, © EPFL, Spring 2025

Constant 1 Constant 0

58

E
X

A
M

P
L

E
S

59

The Venn Diagram
Simple Intersection

▪ Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

▪ Q: What is the corresponding logical expression?

▪ A: AND (intersection; both variables = 1)

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

60

The Venn Diagram
Simple Union

▪ Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

▪ Q: What is the corresponding logical expression?

▪ A: OR (union; either variable = 1)

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

61

The Venn Diagram
Flipped Task: Draw It

▪ Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

▪ Q: Show , i.e., the intersection of

• The region x = 1 and

• The region y = 0

▪ A:

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

62

The Venn Diagram, Contd.

▪ Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

▪ Q: Show , i.e., the union of

• Intersection x = 1, y = 1 and

• The region z = 1

▪ A:

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

63

Network Equivalence Verification
Venn Diagram Approach

▪ Left-hand side

CS-173, © EPFL, Spring 2025

?

E
X

A
M

P
L

E
S

64

Network Equivalence Verification
Venn Diagram Approach

▪ Right-hand side

CS-173, © EPFL, Spring 2025

?

CS-173, © EPFL, Spring 2025 65

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 2: Introduction to Logic
Circuits
▪ 2.1-2.5

▪ Chapter 1: Introduction
▪ 1.5

▪ Chapter 3: Switching Algebra and
Combinational Logic
▪ 3.1.1-3.1.3

66

