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Introduction to Logic Circuits

▪ Logic circuits: the foundations of digital systems
• In smartphones; computers; control systems; 

digital communication devices; … (the list is endless)

▪ The smallest unit of digital information is one bit,
represented as a binary value 0 and 1

▪ In a binary logic circuit, the electrical signals
are constrained to two discrete values

• The key to binary circuits dominance is simplicity

• In practice, the two discrete values are implemented
as voltage levels (the supply voltage or the ground)
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Let’s Talk About…
…Logic circuits, which form
the foundation of digital systems

CS-173, © EPFL, Spring 2025 3



Learning Outcomes

▪ Discover basic digital logic gates and 
use them to build logic networks

▪ Describe logic circuit operation through
• Truth tables

• Timing diagrams

▪ Learn Boolean algebra axioms/theorems/properties
• Check logic function equivalence

• Find more efficient logic circuit implementations
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Quick Outline

▪ Variables and functions
• Single variable

• Two variables

• AND and OR

• NOT

▪ Truth tables

▪ Precedence of operations
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▪ Logic gates

▪ Analysis of a logic network

▪ Timing diagram

▪ Cost of a logic circuit

▪ Boolean algebra
• Axioms

• Theorems

• Properties

▪ Venn diagram
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Variables and Functions
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The Simplest Binary Logic Element

▪ …a switch that has two states

• Open

• Closed

▪ In practice, implemented as transistors 
• A topic of another lecture
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Two States of a Switch

▪ If controlled by an input 
variable , the switch is

• Open if 

• Closed if 
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▪ The symbol for a switch 
controlled by an input variable
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A Light Controlled by a Single Switch

CS-173, © EPFL, Spring 2025

▪ Simple connection to battery
• Explicit return path connection

▪ Simple connection to battery
• Using a ground connection as 

the return path (simplified view)

Ground (GND) Ground (GND)

Power
supply

Power
supply Current Current
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▪ When           , the switch 
is closed, the current flows,
the light is ON

A Light Controlled by a Single Switch
Contd.
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Light Light

▪ When           , the switch 
is open, the current does not 
flow, the light is OFF
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▪ The output is defined as the state (or condition) of the light, 
• If the light is ON, we will say that

• Otherwise, 

▪ We can describe the state of the light     with a logical expression

▪ We say that     is a logic function of the input variable

A Light Controlled by a Single Switch
Logic function
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Two-Variable Logic Functions
Series and Parallel Connections

▪ Consider the possibility of using two switches to control the light
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▪ Parallel connection:

▪ Light will be turned ON if at least one 
(the upper or the lower)
of the two switches is closed

▪ Series connection:

▪ Light will be turned ON only 
if both (the left and the right) 
switches are closed

Logical AND function

Logical OR function
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Logical AND and OR Functions
Series and Parallel Connections, Contd.

▪ Consider the possibility of using two switches to control the light
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▪ Parallel connection:▪ Series connection:

Logical AND function

Logical OR function

AND operator
OR operator
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Two-Variable Logic Functions
Series-Parallel Connections

▪ The AND and OR functions are two of the most important logic 
functions and can be used (together with some other simple 
functions) as building blocks of all logic circuits

• Example: A series-parallel connection of three switches
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Logic Complement Operation
Inversion

▪ We assumed positive action 
occurs when the switch
is closed (x = 1: light ON)

▪ It is equally relevant to consider 
the contrary: positive action 
occurs when the switch 
is open (x = 0: light ON)

▪ Complement (NOT) is the 3rd

most basic logic operation
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Logical NOT function

NOT (complement) 
operator

Extra resistance ensures
the closed switch

does not short-circuit 
the power supply
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Truth Tables
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▪ Logical operations can be defined in the form of a truth table
• AND

• OR

ORAND

Logic AND and OR Operations
Truth Tables
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0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
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AND OR

▪ For    logic variables, there are        rows in the truth table
• AND

• OR

Logic AND and OR Operations
Truth Tables
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0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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NOT

Logic Complement Operation
Truth Tables

▪ Logical operations can be defined in the form of a truth table
• NOT
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0 1

1 0
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Precedence of Operations

▪ Parentheses can be used to indicate the order of operations

▪ Alternatively, to help the readability of logic expressions by 
reducing the number of parentheses, a convention states:

• In the absence of parentheses, operations in a logic expression 
must be performed in the order first NOT, then AND, and then OR

• Example:

• First, complements                are generated

• Then, the product terms                 and                   are formed

• Lastly, the sum of the two product terms is generated

• Note: We can omit the multiplication symbol
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Logic Gates
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Logic Gates and Networks

▪ AND/OR/NOT can implement logic functions of any complexity

▪ Electronically, the operations are implemented with transistors, 
resulting in a circuit called a logic gate

▪ A logic gate has
• One or more inputs

• An output, which is a function of the inputs

▪ To visualize logic circuits (i.e., networks of logic gates), 
we draw schematics composed of logic gates
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NOT gate AND gate OR gate

AND/OR/NOT Graphical Symbols
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Inversion symbol
(complement)
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Buffer

Variants of Single-Input Gates
Inverter, Buffer
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▪ Buffer, passes the input to 
the output unchanged

▪ Buffer, with input inversion

▪ Inverter, passes the input to 
the output after inverting its polarity

▪ Buffer, with in/out inversion
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Variants of AND Gates
NAND gate
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▪ AND gate, basic

▪ AND gate, one input inverted

▪ NAND gate, equiv. to AND gate 
with the output inverted

▪ AND gate, both inputs inverted
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Variants of OR Gates
NOR gate
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▪ OR gate, basic

▪ OR gate, one input inverted

▪ NOR gate, equiv. to OR gate 
with the output inverted

▪ OR gate, both inputs inverted
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Example Logic Network

▪ AND/OR/NOT can implement logic functions of any complexity
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0 0 1

0 1 0

1 0 0

1 1 1
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Analysis of a Logic Network
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Analysis of a Logic Network

▪ Example logic network
• The sequence of input values in the truth table visualized in the network

• Any sequence can be visualized in a timing diagram 
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0 0 1 1 0

0 1 1 1 0

1 0 0 0 0

1 1 1 0 1

0→0→1→1

0→1→0→1

1→1→0→0

0→0→0→1

1→1→0→1
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Timing Diagram

▪ The timing diagram shows the changes in waveforms of the internal 
signals of a logic network and its outputs resulting from the inputs 
changing their values over time

▪ Note: In reality, transitions between
logical levels take some time and
gates may have different delays
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0→0→1→1

0→1→0→1

1→1→0→0

0→0→0→1

1→1→0→1
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Cost of a Logic Circuit

▪ The total cost of a logic circuit is typically defined as the total 
number of gates plus the total number of gate inputs

• Each logic gate (AND, OR, NOT, etc.) contributes to the cost

• More inputs to gates often mean larger, more costly gates

• In simplified cost models, only the number of gates might be considered

• In detailed cost models, weights may be assigned to different types of 
gates, depending on their complexity or physical implementation
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▪ A logic function can be implemented with a variety of different
logic networks of different cost

▪ The above two networks are functionally equivalent

• For the same input sequence, they produce the same output sequence

Functionally Equivalent Networks

CS-173, © EPFL, Spring 2025

0→0→1→1

0→1→0→1

1→1→0→0

0→0→0→1

1→1→0→1

0→0→1→1

0→1→0→1

1→1→0→0

1→1→0→1
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How To Check for Equivalence?

▪ Two logic networks are equivalent if
• Their truth tables are the same (perfect induction)

• There exists a sequence of algebraic manipulations to transform
one logic expression to the other

• These algebraic manipulations are defined as Boolean algebra

• Their Venn diagrams are the same
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How To Find The Best Equivalent Network? 

▪ Logic function can be implemented with a variety of different 
networks. How does one find the best (simplest, least costly)?

▪ The process of finding the best equivalent logical expression 
describing a logic network is called minimization

• Approach 1: Apply a sequence of algebraic transformation
• Not always obvious when to apply which transformation, tedious, impractical

• Approach 2: Use Karnaugh maps (an alternative to the truth table)
• Simpler, but quickly becomes unmanageable by hand (up to 4 inputs acceptable)

• Approach 3: Automated techniques in synthesis software tools
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Out of scope
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Logic Circuit Simplification

▪ Online resource on logic circuit simplification using Karnaugh 
maps for enthusiasts: http://www.32x8.com/index.html
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Out of scope

0→0→1→1

0→1→0→1

1→1→0→0

1→1→0→1
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Boolean Algebra
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A Bit of History

▪ In 1849, George Boole published a scheme for the algebraic
description of processes involved in logical thought and reasoning

▪ This scheme and its refinements became known as Boolean algebra

▪ In the late 1930s, Claude Shannon showed that Boolean algebra 
provides an effective means of describing circuits built with switches

• Therefore, Boolean algebra can be used to describe logic circuits

▪ Boolean algebra is a powerful technique for designing and analyzing 
logic circuits; it is the foundation for our modern digital technology
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Axioms
Boolean Algebra

▪ Like any algebra, Boolean algebra is based on a set of rules derived from
a small number of basic assumptions (i.e., axioms)

▪ Let us assume that Boolean algebra involves elements that take on 
one of the two binary values. Assume the following axioms are true:

▪ From the axioms, we can define some rules (i.e., theorems) for dealing 
with single Boolean variables
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Axioms
Analogy with Logic Gates
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Single-Variable Theorems
Boolean Algebra

▪ If     is a Boolean variable, then the following theorems hold:

▪ Theorems grouped in pairs, emphasizing the principle of duality
• Dual form is obtained by replacing all + operators with · operators, and 

vice versa; and by replacing all 0s with 1s, and vice versa

▪ To prove the theorems, apply perfect induction (i.e., substitute 
the variable with 1 or 0) and use the axioms
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Single-Variable Theorems
Analogy with Logic Gates
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▪ Let us prove the validity of theorem 

▪ Perfect induction:
• : the theorem states                

This is true according to axiom 1a.

• : the theorem states 
This is true according to axiom 3a.

Single-Variable Theorem Proof
Using Perfect induction
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AND

0 0 0

0 1 0

1 0 0

1 1 1

Recall the 
truth table
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Two- and Three-Variable Properties
Boolean Algebra

▪ Given three Boolean variables, the following properties hold

CS-173, © EPFL, Spring 2025

Commutative Associative Distributive
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Two- and Three-Variable Properties
Analogy with Logic Gates
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Commutative

Associative

Distributive
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Checking the Validity of a Logic Equation
Using Boolean Algebra

▪ Let us prove the validity of the following logic equation
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Distributive

Commutative
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(8a)

(12a)

(12a)

Checking the Validity of a Logic Equation
Without truth tables and Venn diagrams

▪ Let us prove the validity of the following logic equation

▪ Let us manipulate the left-hand side (LHS)

▪ The result is exactly the right-hand side (RHS)
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Distributive

Commutative
(6b)

(10a, 10b)
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What’s the Point…?
… of Axioms, Theorems, Properties

▪ A: The purpose of the axioms, theorems, and properties in 
Boolean Algebra is to perform algebraic transformations to do

• Check for equivalence
• Find if two logical expressions (i.e., logical circuits made of gates) are equivalent 

(i.e., perform the same functionality) without evaluating all input possibilities

• Design efficient circuits 
• Simplify the logical expression to find a potentially more efficient equivalent variant 

(i.e., design a circuit of the same desired functionality but with fewer gates)
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Two- and Three-Variable Properties, Contd.
Boolean Algebra

▪ Given three Boolean variables, the following properties hold
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Absorption (covering) Combining DeMorgan’s theorem

Redundancy Consensus
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▪ Prove the validity of the following logic equation

▪ The left-hand side manipulation

Checking the Validity of a Logic Equation
Without truth tables and Venn diagrams
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(10b)

(12a)

(8b)

(6a)

Distributive

Commutative
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▪ Prove the validity of the following logic equation

▪ The right-hand side manipulation

Checking the Validity of a Logic Equation
Without truth tables and Venn diagrams
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(8b)

(6a)

(10b)

Distributive

Commutative

(16a)

(12a)

Redundancy
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The Venn Diagram
Two networks are equivalent if their
Venn diagrams are the same
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The Venn Diagram

▪ Provides a graphical illustration of various operations and 
relations in the algebra of sets

▪ Popularized by John Venn (1834–1923) in the 1880s
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The Venn Diagram
Shades and Contours

▪ In the diagram, the elements of a set are represented by the area 
enclosed by a contour of a circle

• Shaded area where the logical function value = binary 1

• The area within the contour: variable value = binary 1

• The area outside the contour: variable value = binary 0

▪ The union of the shaded areas corresponds to the logical expression
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Constant 1 Constant 0
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The Venn Diagram
Simple Intersection

▪ Reminder: The union of the shaded areas corresponds to the logical 
expression (shaded when the expression is binary 1)

▪ Q: What is the corresponding logical expression?

▪ A: AND (intersection; both variables = 1)
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The Venn Diagram
Simple Union

▪ Reminder: The union of the shaded areas corresponds to the logical 
expression (shaded when the expression is binary 1)

▪ Q: What is the corresponding logical expression?

▪ A: OR (union; either variable = 1)
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The Venn Diagram
Flipped Task: Draw It

▪ Reminder: The union of the shaded areas corresponds to the logical 
expression (shaded when the expression is binary 1)

▪ Q: Show      , i.e., the intersection of

• The region x = 1 and 

• The region y = 0

▪ A:
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The Venn Diagram, Contd.

▪ Reminder: The union of the shaded areas corresponds to the logical 
expression (shaded when the expression is binary 1)

▪ Q: Show              , i.e., the union of

• Intersection x = 1, y = 1 and

• The region z = 1

▪ A:
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Network Equivalence Verification
Venn Diagram Approach

▪ Left-hand side
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Network Equivalence Verification
Venn Diagram Approach

▪ Right-hand side
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Literature
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▪ Chapter 2: Introduction to Logic 
Circuits
▪ 2.1-2.5

▪ Chapter 1: Introduction
▪ 1.5

▪ Chapter 3: Switching Algebra and 
Combinational Logic
▪ 3.1.1-3.1.3
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