Digital Logic Circuits

Logic Functions, Logic Gates, Boolean Algebra

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic
Spring 2025

/
/

/o

///

FUNDAMENTALHHO)

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Introduction to Logic Circuits

= Logic circuits: the foundations of digital systems

* In smartphones; computers; control systems;
digital communication devices; ... (the list is endless)

= The smallest unit of digital information is one bit,
represented as a binary value 0 and 1

* [n a binary logic circuit, the electrical signals
are constrained to two discrete values
« The key to binary circuits dominance is simplicity

* |In practice, the two discrete values are implemented
as voltage levels (the supply voltage or the ground)

CS-173, © EPFL, Spring 2025

Let's Talk About... J/

..Logic circuits, which form y..
the foundation of digital systems IR

Learning Outcomes

= Discover basic digital logic gates and
use them to build logic networks

= Describe logic circuit operation through
 Truth tables
« Timing diagrams
= |_earn Boolean algebra axioms/theorems/properties

« Check logic function equivalence
 Find more efficient logic circuit implementations

Quick Outline

= \Variables and functions
« Single variable
e Two variables
« AND and OR
« NOT

= Truth tables
= Precedence of operations

CS-173, © EPFL, Spring 2025

= | ogic gates

= Analysis of a logic network

= Timing diagram

= Cost of a logic circuit

= Boolean algebra
« AXIOMS
« Theorems
e Properties

= Venn diagram

Variables and Functions

=/IE}.

The Simplest Binary Logic Element

= _aswitch that has two states

o

'y O
g o/

« Open

* Closed

= [n practice, implemented as transistors
A topic of another lecture

CS-173, © EPFL, Spring 2025

Two States of a Switch

= |f controlled by an input = The symbol for a switch
variable x, the switch is controlled by an input variable
*« Openife =0
o/o
x =10
S

e Closedif x = 1

A Light Controlled by a Single Switch

= Simple connection to battery = Simple connection to battery

 Explicit return path connection Using a ground connection as
the return path (simplified view)

(7]
i
—
o
=
<
x
1]

S S

1 Power | @ —— Power @
T supply X Current i supply L Current =

Ground (GND) Ground (GND)

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
x
1]

A Light Controlled by a Single Switch

Contd.

» When x = 1, the switch
IS closed, the current flows,
the light is ON

S

CS-173, © EPFL, Spring 2025

= When z = 0, the switch
IS open, the current does not

flow, the lig

Nt 1S OFF

S

10

(7]
i
—
o
=
<
x
1]

A Light Controlled by a Single Switch

Logic function

= The output is defined as the state (or condition) of the light, L
« |f the light is ON, we will say that L = 1
 Otherwise, L = 0

= \We can describe the state of the light L with a logical expression
L(x)==x

= We say that L is a logic function of the input variable x

CS-173, © EPFL, Spring 2025

11

Two-Variable Logic Functions

Series and Parallel Connections

= Consider the possibility of using two switches to control the light

= Series connection: = Parallel connection:
S
il |
1 | |
T L1 L2 @ i
1 1 =+ s v
. - -5
L N L
= Light will be turned ON only = Light will be turned ON if at least one
if both (the left and the right) (the upper or the lower)

switches are closed of the two switches is closed

CS-173, © EPFL, Spring 2025

Logical AND and OR Functions

Series and Parallel Connections, Contd.

= Consider the possibility of using two switches to control the light
= Series connection: = Parallel connection:

S

S S | Logical OR function
1 | | 1
T Tq L9 @

Il I i
- Logical AND function - | T

«— AND operator - 2 -
L(z1,22) = 21 - T2 L(z1, 29) = 21 . OR operator

where L =1 it 1 =1 and 2z = 1, where L =1ifx1 =1oras =1, orif x1 = x5 =1,

| I = 0 otherwise. L=0if 2, =29 =0.
CS-173, © EPFL, Spring 2025 13

(7]
i
—
o
=
<
x
1]

Two-Variable Logic Functions

Series-Parallel Connections

= The AND and OR functions are two of the most important logic
functions and can be used (together with some other simple
functions) as building blocks of all logic circuits
« Example: A series-parallel connection of three switches

CS-173, © EPFL, Spring 2025

L(z1,22,23) = (1 + T2) - T3

where L = 1 if x5 = 1 and, at the same time,

at least one of the x; and x5 is equal to 1.

1II@

14

Logic Complement Operation

Inversion

= We assumed positive action &ressereenaues
occurs when the switch e poner supply /W\/
s closed (x = 1: light ON)

= [t is equally relevant to consider —= r— S @
the contrary: positive action

occurs when the switch =
is open (x = 0: light ON)

: «— NOT (complement)
= Complement (NOT) is the 3™ L(z)=Z operator
most basic logic operation where L =1 if 2 =0
L=0ifx=1.

CS-173, © EPFL, Spring 2025

15

CS-173, © EPFL, Spring 2025

16

Truth Tables

Logic AND and OR Operations

Truth Tables

= | ogical operations can be defined in the form of a truth table

« AND
AND OR
L(z1,22) = x1 - T2 74 To @1 T2 |21 + 20
where L =1ifz; =1 and 29 = 1, 0 0 0 0
L = 0 otherwise. 0 1 0 1
1 0 0 1
 OR 1 1 1 1

L(.ﬂCl,ZCg) :$1—|—£U2
where L=1ifxy=1orazy =1, orif z1 = x5 =1,
LZOIf.’L‘l 233'2:0.

CS-173, © EPFL, Spring 2025

18

Logic AND and OR Operations

Truth Tables

» For nlogic variables, there are 2 rows in the truth table

» AND AND OR
L(3317372, 56‘3) = I -Tg T3 1 T2 3 X1-To T3 |1 + To + T3

where L =1 if 1 = 290 = 23 = 1, 0 0 0 0 0

L = 0 otherwise. 0 0 1 0 1

0 1 0 0 1

 OR 0 1 1 0 1
1 0 0 0 1

L(x1, 22, w3) = 21 + 22 + X3 1 0 1 0 1

where L =01if x1 = 29 = 23 =0, 1 1 0 0 1

L =1 otherwise. 1 1 1 1 1

CS-173, © EPFL, Spring 2025

Logic Complement Operation

Truth Tables

= | ogical operations can be defined in the form of a truth table
« NOT

L(z) = 7 NOT
where L=1if x =0 £
L=0ifx=1. 0

o -8

CS-173, © EPFL, Spring 2025 20

Precedence of Operations

= Parentheses can be used to indicate the order of operations

= Alternatively, to help the readability of logic expressions by
reducing the number of parentheses, a convention states:

* In the absence of parentheses, operations in a logic expression
must be performed in the order first NOT, then AND, and then OR

« Example:
T1-To+ 71 -T2 = (21 - 22) + ((Z1) - (T2))) = w122 + T1 T2

 First, complements Z1,Z2 are generated
* Then, the productterms 1 - 2 and 1 -2 areformed
« Lastly, the sum of the two product terms is generated

« Note: We can omit the multiplication symbol
CS-173, © EPFL, Spring 2025 21

CS-173, © EPFL, Spring 2025

22

Logic Gates

Logic Gates and Networks

= AND/OR/NOT can implement logic functions of any complexity

= Electronically, the operations are implemented with transistors,
resulting in a circuit called a logic gate

= A logic gate has
* One or more inputs
« An output, which is a function of the inputs

= To visualize logic circuits (i.e., networks of logic gates),
we draw schematics composed of logic gates

CS-173, © EPFL, Spring 2025

24

AND/OR/NOT Graphical Symbols

NOT gate

AND gate

OR gate

Thversionh symbol
(Complement))

CS-173, © EPFL, Spring 2025

L1 —
r1 T
To _| 1 2

f(éﬁlyiﬁz) = T1 -T2

1 +
Xz xr
i) 1 2

f(iﬁl,il?Q) =1 + X2

1 —
i) —} Tr1 -T2 T3
T3 —

f(371;$27373) =T T2 XT3

L1
9 T+ T+ X3
I3

f(x1,20,23) = 1 + X2 + T3

L1 —
: I - In

Ly —
f(x1, ey Ty) =21+ - Xy

L1
Dxl + ... +x,
Ln,

f(x1, ey xpn) =21+ ... + Ty

25

Variants of Single-Input Gates

Inverter, Buffer

= Buffer, passes the input to = [nverter, passes the input to
the output unchanged the output after inverting its polarity
fl@)=o fle)=2
= Buffer, with in/out inversion = Buffer, with input inversion

> S e

) = (z) =z Buffer

Variants of AND Gates

NAND gate
= AND gate, basic = NAND gate, equiv. to AND gate
- _} with the output inverted

L1 — — L —
o —j 12 = T2 —
f(-’Ehil?z) = X1 T2

f(3:17372) = X1 T2

= AND gate, one input inverted = AND gate, both inputs inverted

L1 — — X1 —] T -d L1 — >0‘|
1 =T = T - T =
L2 g To 2oy —O 1-L2 =

flx1,20) =1 - T2

Variants of OR Gates

NOR gate

» OR gate, basic

L1
To X1 +$2

f(5131>332) =21+ T

= OR gate, one input inverted

X .
X1 —{—35‘2 p—
L2

flx1,20) = 21 + T2

X1
L2

= NOR gate, equiv. to OR gate
with the output inverted

L1
1,

1

1 —|—£C2

f($1,$2) = 1 + X2

X1
=

= OR gate, both inputs inverted

>

(7]
i
—
o
=
<
x
1]

Example Logic Network

= AND/OR/NOT can implement logic functions of any complexity

-

CS-173, © EPFL, Spring 2025

}

:[>* flz1,22) = z122 + 77 T2

£(0,0)0=0-0+0-0=1 T ¥ | f(@,2)
f(0,1)=0-1+0-1=0 : : !
f(190)210+T6:0 1 ; :
f(l,l):11+TT:1 1 : 1

29

CS-173, © EPFL, Spring 2025

30

Analysis of a Logic Network

Analysis of a Logic Network

» Example logic network
» The sequence of input values in the truth table visualized in the network
« Any sequence can be visualized in a timing diagram

EXAMPLES

1 0—-0—1—1 DO 1-1—-0—-0 r a2 flenas) | Py P,
5 1-1-0—-1 f g 0 O 1 1 0

5 0 1 1 1 0

0—-1—-0—-1 ‘ i g 1T 0 0 0 0
2 /0001 Ch g 1 0 | 1

f(x1,22) =71 + 2129

CS-173, © EPFL, Spring 2025

Timing Diagram

= The timing diagram shows the changes in waveforms of the internal
signals of a logic network and its outputs resulting from the inputs

changing their values over time At At At At
T {>o1 1-0->0 rr 0 | 0 T 1
! 1-1-0-1 f

L2 0 1 0 1

\ Py % é f

0—-1—-0-1
L2 _/0—)0—)0—)1 Pl L 1 0 b
P, 0 0 1

= Note: In reality, transitions between
logical levels take some time and Frot 0 1
gates may have different delays ' |

CS-173, © EPFL, Spring 2025 ' Time > {

33

Cost of a Logic Circuit

= The total cost of a logic circuit is typically defined as the total
number of gates plus the total number of gate inputs

« Each logic gate (AND, OR, NOT, etc.) contributes to the cost
« More inputs to gates often mean larger, more costly gates
* In simplified cost models, only the number of gates might be considered

* In detailed cost models, weights may be assigned to different types of
gates, depending on their complexity or physical implementation

1

2, 920211 {>O1—>1—>0—>0
1

L2

Functionally Equivalent Networks

= A logic function can be implemented with a variety of different

logic networks of different cost

P

— Py
0—1—-0-1

_/ 0—0—-0-1

= The above two networks are functionally equivalent
« For the same input sequence, they produce the same output sequence

f(x) =21+ x122 = T1 + 22 = g(7)

~

1-1-0-1 f

T 0—0—-1—-1 {>0 1-1—-0-0

)

N

0—1—-0-1

1-1—-0—-1 g

How To Check for Equivalence?

flx1, ey xn) = g(x1, .., xp), V1, vy Ty

= Two logic networks are equivalent if
« Their truth tables are the same (perfect induction)

» There exists a sequence of algebraic manipulations to transform
one logic expression to the other

» These algebraic manipulations are defined as Boolean algebra
« Their Venn diagrams are the same

Out Of scope

How To Find The Best Equivalent Network?

= |_ogic function can be implemented with a variety of different
networks. How does one find the best (simplest, least costly)?

= The process of finding the best equivalent logical expression
describing a logic network is called minimization
» Approach 1: Apply a sequence of algebraic transformation
» Not always obvious when to apply which transformation, tedious, impractical

- Approach 2: Use Karnaugh maps (an alternative to the truth table)
« Simpler, but quickly becomes unmanageable by hand (up to 4 inputs acceptable)

®® Approach 3: Automated techniques in synthesis software tools

CS-173, © EPFL, Spring 2025 37

https://www.eetimes.com/karnaugh-maps-101/

Out Of scope

Logic Circuit Simplification

= Online resource on logic circuit simplification using Karnaugh
maps for enthusiasts: http://www.32x8.com/index.html

AABB

) 0—0—-1-1 {>01 —1—-0—-0

. 0—-1—-0—1 1-1—-0—-1 g AABB)—
2

~ o
—
e o

: y=A'+B

http://www.32x8.com/index.html

CS-173, © EPFL, Spring 2025

39

Boolean Algebra

A Bit of History

= [n 1849, George Boole published a scheme for the algebraic
description of processes involved in logical thought and reasoning

@ = This scheme and its refinements became known as Boolean algebra

= |n the late 1930s, Claude Shannon showed that Boolean algebra
provides an effective means of describing circuits built with switches
« Therefore, Boolean algebra can be used to describe logic circuits

= Boolean algebra is a powerful technique for designing and analyzing
logic circuits; it is the foundation for our modern digital technology

CS-173, © EPFL, Spring 2025

41

Axioms

Boolean Algebra

= |ike any algebra, Boolean algebra is based on a set of rules derived from
a small number of basic assumptions (i.e., axioms)

= | et us assume that Boolean algebra involves elements that take on
one of the two binary values. Assume the following axioms are true:

la. 0-0=0 2. 1-1=1 3a. 0-1=1-0=0 4a. If z =0, then z =1
1. 1+1=1 20. 0+0=0 3b. 1+0=0+1=1| 4b. If z =1, thenz =0

= From the axioms, we can define some rules (i.e., theorems) for dealing
with single Boolean variables

CS-173, © EPFL, Spring 2025 42

Axioms

Analogy with Logic Gates

la. 0-0=0 2. 1-1=1
b. 1+1=1 20. 0+0=0

3a. 0-1=1-0=0
3b. 1+0=0+1=1

4a. If x =0, then x =1
4b. If x =1, thenz =0

0 — 1 |
0—}0 1—}1

CS-173, © EPFL, Spring 2025

1)
o])

-

43

Single-Variable Theorems

Boolean Algebra

= |f x is a Boolean variable, then the following theorems hold:

5. z+1=1 6b. r+0=uzx b r A — b, r4+7—1 . T=x

= Theorems grouped in pairs, emphasizing the principle of duality
 Dual form is obtained by replacing all + operators with - operators, and
vice versa; and by replacing all Os with 1s, and vice versa

= To prove the theorems, apply perfect induction (i.e., substitute
the variable with 1 or 0) and use the axioms

CS-173, © EPFL, Spring 2025 44

S|

Single-Variable Theorems

Analogy with Logic Gates

ha. x-0=0 6a. -1 == Ta. r-x==x 8a. - =10
., z+1=1 6b. +0==zx . r+x==x 8. z+x =1

CS-173, © EPFL, Spring 2025 45

Single-Variable Theorem Proof

Using Perfect induction

= |_et us prove the validity of theorem 5a. z-0=0
= Perfect induction:

@ « 2 =0:the theorem states 0-0=0 Recall the
: This is true according to axiom 1a. truch table ~ AND
n Iq X2 L1 -T2
1. 1+1=1 0 1 0
« © = 1:the theorem states 1-0 =0 1 1 1

This is true according to axiom 3a.

3a. 0-1=1-0=0
CS-173, © EPFL, Spring 2025 3b. 1+0=0+1=1

Two- and Three-Variable Properties

Boolean Algebra

= Given three Boolean variables, the following properties hold

Associative Distributive
10a. z-y=vy-x lla. z-(y-2)=(v-y)- 2 12a. z-(y+2)=x-y+x-z
10b. z+y=y+=x 110. 2+ (y+2)=(x+y) +2 12b. z4+y-z=(x+y) (x+2)

CS-173, © EPFL, Spring 2025

47

Two- and Three-Variable Properties

Analogy with Logic Gates Distributive
Associative 12a. z-(y+2)=a-y+ax-2
12b. x+y-z2=(x+y) (z+2)

10a. z-y=y-x . ()

€T —
10b. x+y=y—+=x ny J12a
z

CS-173, © EPFL, Spring 2025

48

Checking the Validity of a Logic Equation

Using Boolean Algebra

= |_et us prove the validity of the following logic equation

(x1 + x3)(T1 +T3) = 1T3 + T123

Distributive

2. z- (y+2)=z-y+x-2
12b.a:—|—y-z:(ac—|—y)-(:17—|—z})

N
a. r-x =0 6a. z-1==x
8b. r+x =1 6b. t+0==zx

J

10a. - y=9y-x

(7]
w
—
o
=
<
>
]

106. z+y=y+=x

49

CS-173, © EPFL, Spring 2025

Checking the Validity of a Logic Equation

Without truth tables and Venn diagrams

= |_et us prove the validity of the following logic equation

(x1 + x3)(T1 +T3) = 1T3 + T123

Distributive
- = | et us manipulate the left-hand side (LHS) 120. 2 (y+2)=a-y+a-2
: LHS = (o1 + 2) (71 +75) 1264y 2= (2 +y) (2 +2)
(12a) = (z1 + $3)§+ (1 + ws)é}‘? N
(12a) = a:laz_lﬂgaz_l + 331;1:_3?3:35_3 8a. - =0 6a. z-1==x
(8a) =0+ x371 + 2173+ 0 8. x+zx =1 6b. xr+0==x
J

(6b) = 371 + 21Z3
(10a, 10b) = 2173 + T173

= The result is exactly the right-hand side (RHS) 0a. z-y=y-z
100. z4+y=y+=x

50

CS-173, © EPFL, Spring 2025

What's the Point...?

... of Axioms, Theorems, Properties

= A: The purpose of the axioms, theorems, and properties in

Boo

ean Algebra is to perform algebraic transtormations to do

« Check for equivalence

D

 Find if two logical expressions (i.e., logical circuits made of gates) are equivalent
(i.e., perform the same functionality) without evaluating all input possibilities

esign efficient circuits

« Simplify the logical expression to find a potentially more efficient equivalent variant
(i.e., design a circuit of the same desired functionality but with fewer gates)

CS-173, © EPFL, Spring 2025

51

Two- and Three-Variable Properties, Contd.

Boolean Algebra

= Given three Boolean variables, the following properties hold

DeMorgan’s theorem

Absorption (covering)
15a. - y=7 +
15b. v 4+y=72-

13a. z4+ax-y==x 14a. z-y+x-
13b.z-(z+y) =2 14b. (z+vy) - (

SN
|
8

|

Neag|
S—
I
=

Redundancy

16a. z+2x-y=x+y 17a. z-y+y-2+x-z2=2-y+2-z

16b. z-(T+y)=x-y 170. (x+y)-(y+2)- (T+2)=(x+y) (T+2)

CS-173, © EPFL, Spring 2025

52

Checking the Validity of a Logic Equation

Without truth tables and Venn diagrams

= Prove the validity of the following logic equation 10a. z-y=y-

T1T3 + Tg T3 + 13 + Ta2xX3 = T1 To + T1X2 + 172 10b. z+y=y+z

: = The left-hand side manipulation DiStiibutive

2 12a. z-(y+2)=x-y+x-=z

i LHS:$11}3+JJ2$3—|—ZC1£€3+$_2$3 1Qbsc—|—yz:(sc—|—y)(:17—|—z)
(10b) = 2175 + x123 + T2 T3 + Tows

(12a) = 21 (T3 + x3) + T2 (T3 + x3)
(8b) =z -1+75-1

8a. x-x =10
T
(63):x1+x_2

8b.

ba. -1 ==
6b. +0==zx

CS-173, © EPFL, Spring 2025 53

(7]
w
—
o
=
<
>
]

Checking the Validity of a Logic Equation

Without truth tables and Venn diagrams

= Prove the validity of the following logic equation 10a. z-y=y-

T1T3 + Tg T3 + 13 + Ta2xX3 = T1 To + T1X2 + 172 10b. z+y=y+z

= The right-hand side manipulation SR
12a. z-(y+2)=x-y+x-2
RHSz_lx_2+ai1w2+1_2 12b.z+y-z=(x+vy) (r+ 2)

(8b) =71 T2+ 21 -1
(6a) = T1 T2 + 21
(10b) = 21 + 77 73
(16a) = 1 + 72

8a. x-x =0
8b. x

Redundancy

16a. x+x-y=x+vy 6a. z-1==x
16b. z-(x4+y)=x-y 6b. +0==zx

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025

55

The Venn Diagram

Two networks are equivalent if their
Venn diagrams are the same

CS-173, © EPFL, Spring 2025

‘ L) Om -
WZURN
k= E / | .
o \ \ i
[=<t
\ &

The Venn Diagram

= Provides a graphical illustration of various operations and
relations in the algebra of sets

= Popularized by John Venn (1834—-1923) in the 1880s

@)

The Venn Diagram

Shades and Contours

= |n the diagram, the elements of a set are represented by the area
enclosed by a contour of a circle
« Shaded area where the logical function value = binary 1
« The area within the contour: variable value = binary 1
« The area outside the contour: variable value = binary 0

@)

Constant 1 Constant O f(ﬂf) — X f(a:) —

S|

= The union of the shaded areas corresponds to the logical expression

(7]
i
—
o
=
<
x
1]

The Venn Diagram

Simple Intersection

= Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

= Q: What is the corresponding logical expression?

LY

= A: AND (intersection; both variables = 1)

CS-173, © EPFL, Spring 2025

59

(7]
w
—
o
=
<
>
]

The Venn Diagram

Simple Union

= Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

= Q: What is the corresponding logical expression?

T+ 9y

= A: OR (union; either variable = 1)

CS-173, © EPFL, Spring 2025

60

(7]
i
—
o
=
<
>
]

The Venn Diagram

Flipped Task: Draw It

= Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

= Q: Show v, i.e., the intersection of
* The region x =1 and
* Theregiony=20

" A

CS-173, © EPFL, Spring 2025

61

(7]
i
—
o
=
<
>
]

The Venn Diagram, Contd.

= Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

» Q: Show xy + z, i.e., the union of
* Intersectionx =1,y =1and
* Theregionz="1

= A

Y + 2z

CS-173, © EPFL, Spring 2025

62

Network Equivalence Verification ., :..,.2: 12

Venn Diagram Approach

()| (&

ry Tz Yyz

= | eft-hand side
Ty + Tz +yz ""‘

CS-173, © EPFL, Spring 2025 63

(7]
i
—
o
=
<
x
1]

Network Equivalence Verification ., :..,.2: 12

Venn Diagram Approach

()| (&

LY €Tz

(7]
i
—
o
=
<
x
1]

TY + Tz + Yz

= Right-hand side

D
-
D
o

TY + T2

CS-173, © EPFL, Spring 2025 64

CS-173, © EPFL, Spring 2025

65

Literature

DIGITAL LOGIC

with Verilog Design

= Chapter 2: Introduction to Logic
Circuits
= 2.1-2.5

CS-173, © EPFL, Spring 2025

AL
IGIN

|

= Chapter 1: Introduction
= 15
= Chapter 3: Switching Algebra and
Combinational Logic
= 3.1.1-3.1.3

66

