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Introduction to Logic Circuits

= Logic circuits: the foundations of digital systems

* In smartphones; computers; control systems;
digital communication devices; ... (the list is endless)

= The smallest unit of digital information is one bit,
represented as a binary value 0 and 1

* [n a binary logic circuit, the electrical signals
are constrained to two discrete values
« The key to binary circuits dominance is simplicity

* |In practice, the two discrete values are implemented
as voltage levels (the supply voltage or the ground)
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Let's Talk About... J/

..Logic circuits, which form y..
the foundation of digital systems IR




Learning Outcomes

= Discover basic digital logic gates and
use them to build logic networks

= Describe logic circuit operation through
 Truth tables
« Timing diagrams
= |_earn Boolean algebra axioms/theorems/properties

« Check logic function equivalence
 Find more efficient logic circuit implementations



Quick Outline

= \Variables and functions
« Single variable
e Two variables
« AND and OR
« NOT

= Truth tables
= Precedence of operations
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= | ogic gates

= Analysis of a logic network

= Timing diagram

= Cost of a logic circuit

= Boolean algebra
« AXIOMS
« Theorems
e Properties

= Venn diagram



Variables and Functions
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The Simplest Binary Logic Element

= _aswitch that has two states

o

'y O
g o/

« Open

* Closed

= [n practice, implemented as transistors
A topic of another lecture
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Two States of a Switch

= |f controlled by an input = The symbol for a switch
variable x, the switch is controlled by an input variable
*« Openife =0
o/o
x =10
S

e Closedif x = 1




A Light Controlled by a Single Switch

= Simple connection to battery = Simple connection to battery

 Explicit return path connection  Using a ground connection as
the return path (simplified view)
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1 Power | @ —— Power @
T supply X Current i supply L  Current =

Ground (GND) Ground (GND)

CS-173, © EPFL, Spring 2025



(7]
i
—
o
=
<
x
1]

A Light Controlled by a Single Switch

Contd.

» When x = 1, the switch
IS closed, the current flows,
the light is ON

S
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= When z = 0, the switch
IS open, the current does not

flow, the lig

Nt 1S OFF

S
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A Light Controlled by a Single Switch

Logic function

= The output is defined as the state (or condition) of the light, L
« |f the light is ON, we will say that L = 1
 Otherwise, L = 0

= \We can describe the state of the light L with a logical expression
L(x)==x

= We say that L is a logic function of the input variable x
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Two-Variable Logic Functions

Series and Parallel Connections

= Consider the possibility of using two switches to control the light

= Series connection: = Parallel connection:
S
il |
1 | |
T L1 L2 @ i
1 1 =+ s v
. - -5
L N L
= Light will be turned ON only = Light will be turned ON if at least one
if both (the left and the right) (the upper or the lower)

switches are closed of the two switches is closed
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Logical AND and OR Functions

Series and Parallel Connections, Contd.

= Consider the possibility of using two switches to control the light
= Series connection: = Parallel connection:

S

S S | Logical OR function
1 | | 1
T Tq L9 @

Il I i
- Logical AND function - | T

«— AND operator - 2 -
L(z1,22) = 21 - T2 L(z1, 29) = 21 . OR operator

where L =1 it 1 =1 and 2z = 1, where L =1ifx1 =1oras =1, orif x1 = x5 =1,

| I = 0 otherwise. L=0if 2, =29 =0.
CS-173, © EPFL, Spring 2025 13
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Two-Variable Logic Functions

Series-Parallel Connections

= The AND and OR functions are two of the most important logic
functions and can be used (together with some other simple
functions) as building blocks of all logic circuits
« Example: A series-parallel connection of three switches
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L(z1,22,23) = (1 + T2) - T3

where L = 1 if x5 = 1 and, at the same time,

at least one of the x; and x5 is equal to 1.

1II@
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Logic Complement Operation

Inversion

= We assumed positive action  &ressereenaues
occurs when the switch e poner supply /W\/
s closed (x = 1: light ON)

= [t is equally relevant to consider —= r— S @
the contrary: positive action

occurs when the switch =
is open (x = 0: light ON)

: «— NOT (complement)
= Complement (NOT) is the 3™ L(z)=Z  operator
most basic logic operation where L =1 if 2 =0
L=0ifx=1.

CS-173, © EPFL, Spring 2025

15



CS-173, © EPFL, Spring 2025

16



Truth Tables




Logic AND and OR Operations

Truth Tables

= | ogical operations can be defined in the form of a truth table

« AND
AND OR
L(z1,22) = x1 - T2 74 To @1 T2 |21 + 20
where L =1ifz; =1 and 29 = 1, 0 0 0 0
L = 0 otherwise. 0 1 0 1
1 0 0 1
 OR 1 1 1 1

L(.ﬂCl,ZCg) :$1—|—£U2
where L=1ifxy=1orazy =1, orif z1 = x5 =1,
LZOIf.’L‘l 233'2:0.
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Logic AND and OR Operations

Truth Tables

» For nlogic variables, there are 2 rows in the truth table

» AND AND OR
L(3317372, 56‘3) = I -Tg T3 1 T2 3 X1-To T3 |1 + To + T3

where L =1 if 1 = 290 = 23 = 1, 0 0 0 0 0

L = 0 otherwise. 0 0 1 0 1

0 1 0 0 1

 OR 0 1 1 0 1
1 0 0 0 1

L(x1, 22, w3) = 21 + 22 + X3 1 0 1 0 1

where L =01if x1 = 29 = 23 =0, 1 1 0 0 1

L =1 otherwise. 1 1 1 1 1
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Logic Complement Operation

Truth Tables

= | ogical operations can be defined in the form of a truth table
« NOT

L(z) = 7 NOT
where L=1if x =0 £
L=0ifx=1. 0

o -8
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Precedence of Operations

= Parentheses can be used to indicate the order of operations

= Alternatively, to help the readability of logic expressions by
reducing the number of parentheses, a convention states:

* In the absence of parentheses, operations in a logic expression
must be performed in the order first NOT, then AND, and then OR

« Example:
T1-To+ 71 -T2 = (21 - 22) + ((Z1) - (T2))) = w122 + T1 T2

 First, complements Z1,Z2 are generated
* Then, the productterms 1 - 2 and 1 -2 areformed
« Lastly, the sum of the two product terms is generated

« Note: We can omit the multiplication symbol
CS-173, © EPFL, Spring 2025 21
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Logic Gates




Logic Gates and Networks

= AND/OR/NOT can implement logic functions of any complexity

= Electronically, the operations are implemented with transistors,
resulting in a circuit called a logic gate

= A logic gate has
* One or more inputs
« An output, which is a function of the inputs

= To visualize logic circuits (i.e., networks of logic gates),
we draw schematics composed of logic gates

CS-173, © EPFL, Spring 2025
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AND/OR/NOT Graphical Symbols

NOT gate

AND gate

OR gate

Thversionh symbol
(Complement) )
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L1 —
r1 T
To _| 1 2

f(éﬁlyiﬁz) = T1 -T2

1 +
Xz xr
i) 1 2

f(iﬁl,il?Q) =1 + X2

1 —
i) —} Tr1 -T2 T3
T3 —

f(371;$27373) =T T2 XT3

L1
9 T+ T+ X3
I3

f(x1,20,23) = 1 + X2 + T3

L1 —
: I - In

Ly —
f(x1, ey Ty) =21+ - Xy

L1
Dxl + ... +x,
Ln,

f(x1, ey xpn) =21+ ... + Ty
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Variants of Single-Input Gates

Inverter, Buffer

= Buffer, passes the input to = [nverter, passes the input to
the output unchanged the output after inverting its polarity
fl@)=o fle)=2
= Buffer, with in/out inversion = Buffer, with input inversion

> S e

) = (z) =z Buffer



Variants of AND Gates

NAND gate
= AND gate, basic = NAND gate, equiv. to AND gate
- _} with the output inverted

L1 — — L —
o —j 12 = T2 —
f(-’Ehil?z) = X1 T2

f(3:17372) = X1 T2

= AND gate, one input inverted = AND gate, both inputs inverted

L1 — — X1 —] T -d L1 — >0‘|
1 =T = T - T =
L2 g To 2oy —O 1-L2 =

flx1,20) =1 - T2




Variants of OR Gates

NOR gate

» OR gate, basic

L1
To X1 +$2

f(5131>332) =21+ T

= OR gate, one input inverted

X .
X1 —{—35‘2 p—
L2

flx1,20) = 21 + T2

X1
L2

= NOR gate, equiv. to OR gate
with the output inverted

L1
1,

1

1 —|—£C2

f($1,$2) = 1 + X2

X1
=

= OR gate, both inputs inverted

>
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Example Logic Network

= AND/OR/NOT can implement logic functions of any complexity

-
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}

:[>* flz1,22) = z122 + 77 T2

£(0,0)0=0-0+0-0=1 T ¥ | f(@,2)
f(0,1)=0-1+0-1=0 : : !
f(190)210+T6:0 1 ; :
f(l,l):11+TT:1 1 : 1
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Analysis of a Logic Network




Analysis of a Logic Network

» Example logic network
» The sequence of input values in the truth table visualized in the network
« Any sequence can be visualized in a timing diagram

EXAMPLES

1 0—-0—1—1 DO 1-1—-0—-0 r a2 flenas) | Py P,
5 1-1-0—-1 f g 0 O 1 1 0

5 0 1 1 1 0

0—-1—-0—-1 ‘ i g 1T 0 0 0 0
2 /0001 Ch g 1 0 | 1

f(x1,22) =71 + 2129
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Timing Diagram

= The timing diagram shows the changes in waveforms of the internal
signals of a logic network and its outputs resulting from the inputs

changing their values over time At At At At
T {>o1 1-0->0 rr 0 | 0 T 1
! 1-1-0-1 f

L2 0 1 0 1

\ Py % é f

0—-1—-0-1
L2 _/0—)0—)0—)1 Pl L 1 0 b
P, 0 0 1

= Note: In reality, transitions between
logical levels take some time and Frot 0 1
gates may have different delays ' |

CS-173, © EPFL, Spring 2025 ' Time > {

33



Cost of a Logic Circuit

= The total cost of a logic circuit is typically defined as the total
number of gates plus the total number of gate inputs

« Each logic gate (AND, OR, NOT, etc.) contributes to the cost
« More inputs to gates often mean larger, more costly gates
* In simplified cost models, only the number of gates might be considered

* In detailed cost models, weights may be assigned to different types of
gates, depending on their complexity or physical implementation



1

2, 920211 {>O1—>1—>0—>0
1

L2

Functionally Equivalent Networks

= A logic function can be implemented with a variety of different

logic networks of different cost

P

— Py
0—1—-0-1

_/ 0—0—-0-1

= The above two networks are functionally equivalent
« For the same input sequence, they produce the same output sequence

f(x) =21+ x122 = T1 + 22 = g(7)

~

1-1-0-1 f

T 0—0—-1—-1 {>0 1-1—-0-0

)

N

0—1—-0-1

1-1—-0—-1 g




How To Check for Equivalence?

flx1, ey xn) = g(x1, .., xp), V1, vy Ty

= Two logic networks are equivalent if
« Their truth tables are the same (perfect induction)

» There exists a sequence of algebraic manipulations to transform
one logic expression to the other

» These algebraic manipulations are defined as Boolean algebra
« Their Venn diagrams are the same



Out Of scope

How To Find The Best Equivalent Network?

= |_ogic function can be implemented with a variety of different
networks. How does one find the best (simplest, least costly)?

= The process of finding the best equivalent logical expression
describing a logic network is called minimization
» Approach 1: Apply a sequence of algebraic transformation
» Not always obvious when to apply which transformation, tedious, impractical

- Approach 2: Use Karnaugh maps (an alternative to the truth table)
« Simpler, but quickly becomes unmanageable by hand (up to 4 inputs acceptable)

®® Approach 3: Automated techniques in synthesis software tools

CS-173, © EPFL, Spring 2025 37
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Out Of scope

Logic Circuit Simplification

= Online resource on logic circuit simplification using Karnaugh
maps for enthusiasts: http://www.32x8.com/index.html

AABB

) 0—0—-1-1 {>01 —1—-0—-0

. 0—-1—-0—1 1-1—-0—-1 g AABB )—
2

~ o
—
e o

: y=A'+B


http://www.32x8.com/index.html
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Boolean Algebra




A Bit of History

= [n 1849, George Boole published a scheme for the algebraic
description of processes involved in logical thought and reasoning

@ = This scheme and its refinements became known as Boolean algebra

= |n the late 1930s, Claude Shannon showed that Boolean algebra
provides an effective means of describing circuits built with switches
« Therefore, Boolean algebra can be used to describe logic circuits

= Boolean algebra is a powerful technique for designing and analyzing
logic circuits; it is the foundation for our modern digital technology

CS-173, © EPFL, Spring 2025
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Axioms

Boolean Algebra

= |ike any algebra, Boolean algebra is based on a set of rules derived from
a small number of basic assumptions (i.e., axioms)

= | et us assume that Boolean algebra involves elements that take on
one of the two binary values. Assume the following axioms are true:

la. 0-0=0 2. 1-1=1 3a. 0-1=1-0=0 4a. If z =0, then z =1
1. 1+1=1 20. 0+0=0 3b. 1+0=0+1=1| 4b. If z =1, thenz =0

= From the axioms, we can define some rules (i.e., theorems) for dealing
with single Boolean variables

CS-173, © EPFL, Spring 2025 42



Axioms

Analogy with Logic Gates

la. 0-0=0 2. 1-1=1
b. 1+1=1 20. 0+0=0

3a. 0-1=1-0=0
3b. 1+0=0+1=1

4a. If x =0, then x =1
4b. If x =1, thenz =0

0 — 1 |
0—}0 1—}1

CS-173, © EPFL, Spring 2025
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Single-Variable Theorems

Boolean Algebra

= |f x is a Boolean variable, then the following theorems hold:

5. z+1=1 6b. r+0=uzx b r A — b, r4+7—1 . T=x

= Theorems grouped in pairs, emphasizing the principle of duality
 Dual form is obtained by replacing all + operators with - operators, and
vice versa; and by replacing all Os with 1s, and vice versa

= To prove the theorems, apply perfect induction (i.e., substitute
the variable with 1 or 0) and use the axioms

CS-173, © EPFL, Spring 2025 44

S|




Single-Variable Theorems

Analogy with Logic Gates

ha. x-0=0 6a. -1 == Ta. r-x==x 8a. - =10
., z+1=1 6b. +0==zx . r+x==x 8. z+x =1

CS-173, © EPFL, Spring 2025 45



Single-Variable Theorem Proof

Using Perfect induction

= |_et us prove the validity of theorem 5a. z-0=0
= Perfect induction:

@ « 2 =0:the theorem states 0-0=0 Recall the
: This is true according to axiom 1a. truch table  ~ AND
n Iq X2 L1 -T2
1. 1+1=1 0 1 0
« © = 1:the theorem states 1-0 =0 1 1 1

This is true according to axiom 3a.

3a. 0-1=1-0=0
CS-173, © EPFL, Spring 2025 3b. 1+0=0+1=1




Two- and Three-Variable Properties

Boolean Algebra

= Given three Boolean variables, the following properties hold

Associative Distributive
10a. z-y=vy-x lla. z-(y-2)=(v-y)- 2 12a. z-(y+2)=x-y+x-z
10b. z+y=y+=x 110. 2+ (y+2)=(x+y) +2 12b. z4+y-z=(x+y)  (x+2)

CS-173, © EPFL, Spring 2025
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Two- and Three-Variable Properties

Analogy with Logic Gates Distributive
Associative 12a. z-(y+2)=a-y+ax-2
12b. x+y-z2=(x+y) (z+2)

10a. z-y=y-x . ( )

€T —
10b. x+y=y—+=x ny J12a
z

CS-173, © EPFL, Spring 2025
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Checking the Validity of a Logic Equation

Using Boolean Algebra

= |_et us prove the validity of the following logic equation

(x1 + x3)(T1 +T3) = 1T3 + T123

Distributive

2. z- (y+2)=z-y+x-2
12b.a:—|—y-z:(ac—|—y)-(:17—|—z})

N
a. r-x =0 6a. z-1==x
8b. r+x =1 6b. t+0==zx

J

10a. - y=9y-x

(7]
w
—
o
=
<
>
]

106. z+y=y+=x

49
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Checking the Validity of a Logic Equation

Without truth tables and Venn diagrams

= |_et us prove the validity of the following logic equation

(x1 + x3)(T1 +T3) = 1T3 + T123

Distributive
- = | et us manipulate the left-hand side (LHS) 120. 2 (y+2)=a-y+a-2
: LHS = (o1 + 2) (71 +75) 1264y 2= (2 +y) (2 +2)
(12a) = (z1 + $3)§+ (1 + ws)é}‘? N
(12a) = a:laz_lﬂgaz_l + 331;1:_3?3:35_3 8a. - =0 6a. z-1==x
(8a) =0+ x371 + 2173+ 0 8. x+zx =1 6b. xr+0==x
J

(6b) = 371 + 21Z3
(10a, 10b) = 2173 + T173

= The result is exactly the right-hand side (RHS) 0a. z-y=y-z
100. z4+y=y+=x

50

CS-173, © EPFL, Spring 2025




What's the Point...?

... of Axioms, Theorems, Properties

= A: The purpose of the axioms, theorems, and properties in

Boo

ean Algebra is to perform algebraic transtormations to do

« Check for equivalence

D

 Find if two logical expressions (i.e., logical circuits made of gates) are equivalent
(i.e., perform the same functionality) without evaluating all input possibilities

esign efficient circuits

« Simplify the logical expression to find a potentially more efficient equivalent variant
(i.e., design a circuit of the same desired functionality but with fewer gates)

CS-173, © EPFL, Spring 2025
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Two- and Three-Variable Properties, Contd.

Boolean Algebra

= Given three Boolean variables, the following properties hold

DeMorgan’s theorem

Absorption (covering)
15a. - y=7 +
15b. v 4+y=72-

13a. z4+ax-y==x 14a. z-y+x-
13b.z-(z+y) =2 14b. (z+vy) - (

SN
|
8

_|_

Neag|
S—
I
=

Redundancy

16a. z+2x-y=x+y 17a. z-y+y-2+x-z2=2-y+2-z

16b. z-(T+y)=x-y 170. (x+y)-(y+2)- (T+2)=(x+y) (T+2)

CS-173, © EPFL, Spring 2025
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Checking the Validity of a Logic Equation

Without truth tables and Venn diagrams

= Prove the validity of the following logic equation 10a. z-y=y-

T1T3 + Tg T3 + 13 + Ta2xX3 = T1 To + T1X2 + 172 10b. z+y=y+z

: = The left-hand side manipulation DiStiibutive

2 12a. z-(y+2)=x-y+x-=z

i LHS:$11}3+JJ2$3—|—ZC1£€3+$_2$3 1Qbsc—|—yz:(sc—|—y)(:17—|—z)
(10b) = 2175 + x123 + T2 T3 + Tows

(12a) = 21 (T3 + x3) + T2 (T3 + x3)
(8b) =z -1+75-1

8a. x-x =10
T
(63):x1+x_2

8b.

ba. -1 ==
6b. +0==zx

CS-173, © EPFL, Spring 2025 53
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Checking the Validity of a Logic Equation

Without truth tables and Venn diagrams

= Prove the validity of the following logic equation 10a. z-y=y-

T1T3 + Tg T3 + 13 + Ta2xX3 = T1 To + T1X2 + 172 10b. z+y=y+z

= The right-hand side manipulation SR
12a. z-(y+2)=x-y+x-2
RHSz_lx_2+ai1w2+$1$_2 12b.z+y-z=(x+vy) (r+ 2)

(8b) =71 T2+ 21 -1
(6a) = T1 T2 + 21
(10b) = 21 + 77 73
(16a) = 1 + 72

8a. x-x =0
8b. x

Redundancy

16a. x+x-y=x+vy 6a. z-1==x
16b. z-(x4+y)=x-y 6b. +0==zx

CS-173, © EPFL, Spring 2025
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The Venn Diagram

Two networks are equivalent if their
Venn diagrams are the same

CS-173, © EPFL, Spring 2025
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The Venn Diagram

= Provides a graphical illustration of various operations and
relations in the algebra of sets

= Popularized by John Venn (1834—-1923) in the 1880s

@ )




The Venn Diagram

Shades and Contours

= |n the diagram, the elements of a set are represented by the area
enclosed by a contour of a circle
« Shaded area where the logical function value = binary 1
« The area within the contour: variable value = binary 1
« The area outside the contour: variable value = binary 0

@ )

Constant 1 Constant O f(ﬂf) — X f(a:) —

S|

= The union of the shaded areas corresponds to the logical expression
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The Venn Diagram

Simple Intersection

= Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

= Q: What is the corresponding logical expression?

LY

= A: AND (intersection; both variables = 1)

CS-173, © EPFL, Spring 2025
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The Venn Diagram

Simple Union

= Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

= Q: What is the corresponding logical expression?

T+ 9y

= A: OR (union; either variable = 1)

CS-173, © EPFL, Spring 2025
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The Venn Diagram

Flipped Task: Draw It

= Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

= Q: Show v, i.e., the intersection of
* The region x =1 and
* Theregiony=20

" A

CS-173, © EPFL, Spring 2025
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The Venn Diagram, Contd.

= Reminder: The union of the shaded areas corresponds to the logical
expression (shaded when the expression is binary 1)

» Q: Show xy + z, i.e., the union of
* Intersectionx =1,y =1and
* Theregionz="1

= A

Y + 2z

CS-173, © EPFL, Spring 2025
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Network Equivalence Verification ., :..,.2: 12

Venn Diagram Approach

()| (&

ry Tz Yyz

= | eft-hand side
Ty + Tz +yz ""‘

CS-173, © EPFL, Spring 2025 63
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Network Equivalence Verification ., :..,.2: 12

Venn Diagram Approach

()| (&

LY €Tz

(7]
i
—
o
=
<
x
1]

TY + Tz + Yz

= Right-hand side

D
-
D
o

TY + T2

CS-173, © EPFL, Spring 2025 64
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Literature

DIGITAL LOGIC

with Verilog Design

= Chapter 2: Introduction to Logic
Circuits
= 2.1-2.5

CS-173, © EPFL, Spring 2025

AL
IGIN

|

= Chapter 1: Introduction
= 15
= Chapter 3: Switching Algebra and
Combinational Logic
= 3.1.1-3.1.3
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