

Digital Logic Circuits

Logic Functions, Logic Gates, Boolean Algebra

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

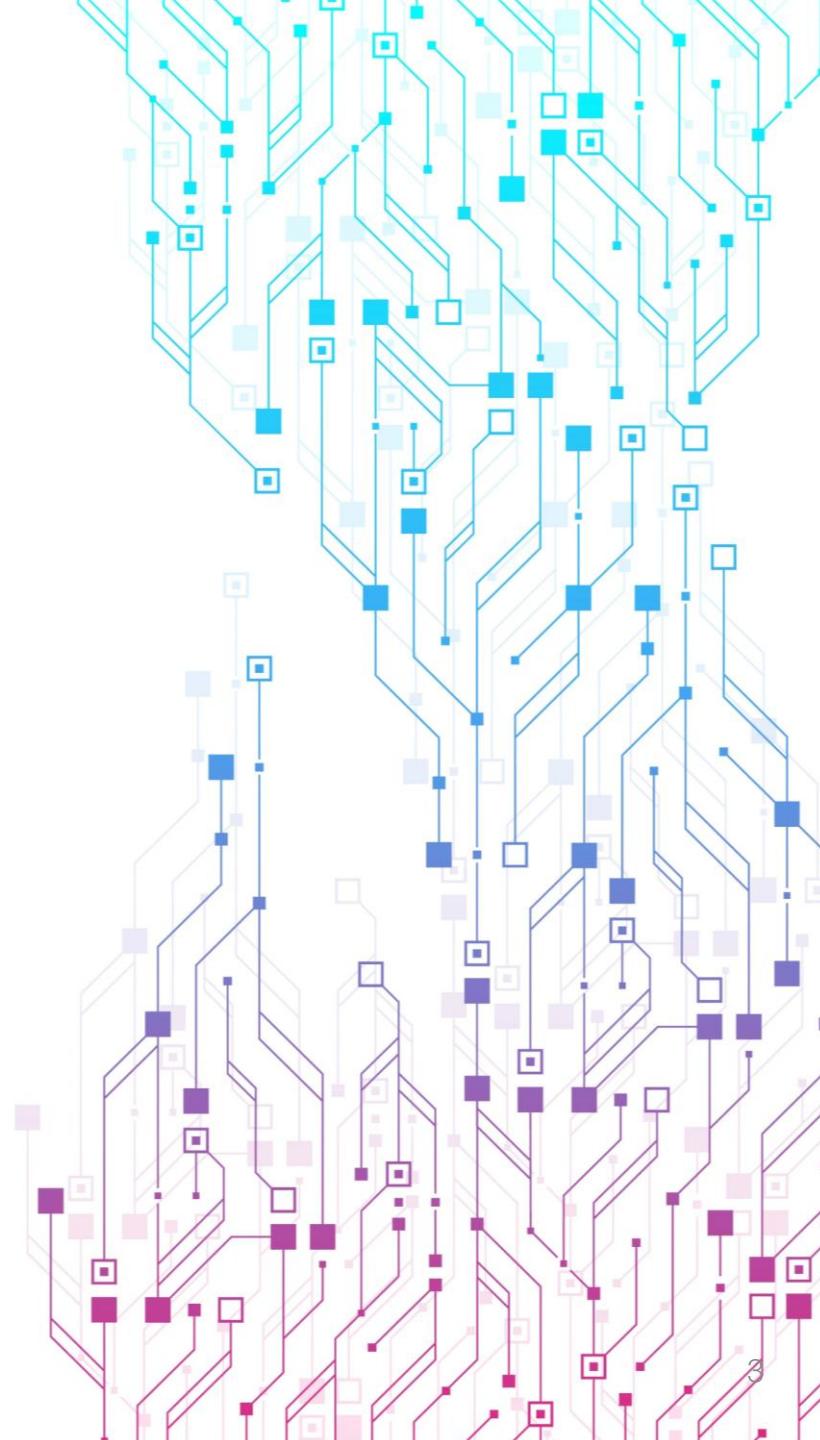
Spring 2025

Introduction to Logic Circuits

- Logic circuits: the foundations of digital systems
 - In smartphones; computers; control systems; digital communication devices; ... (the list is endless)
- The smallest unit of digital information is one bit, represented as a binary value **0 and 1**
- In a binary logic circuit, the electrical signals are constrained to two discrete values
 - The key to binary circuits dominance is **simplicity**
 - In practice, the two discrete values are implemented as voltage levels (the supply voltage or the ground)

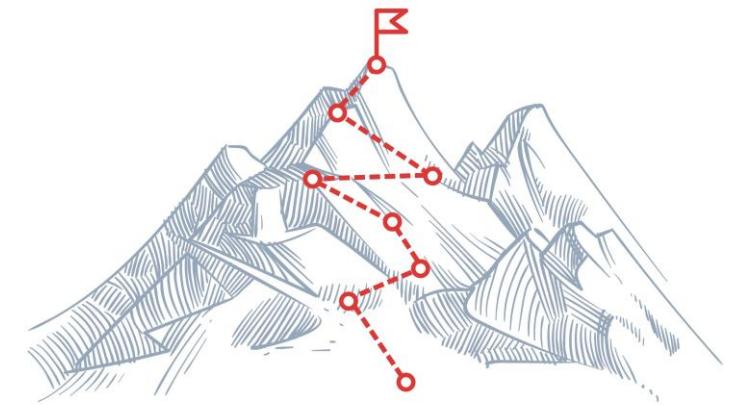
Let's Talk About...

...Logic circuits, which form
the foundation of digital systems



Learning Outcomes

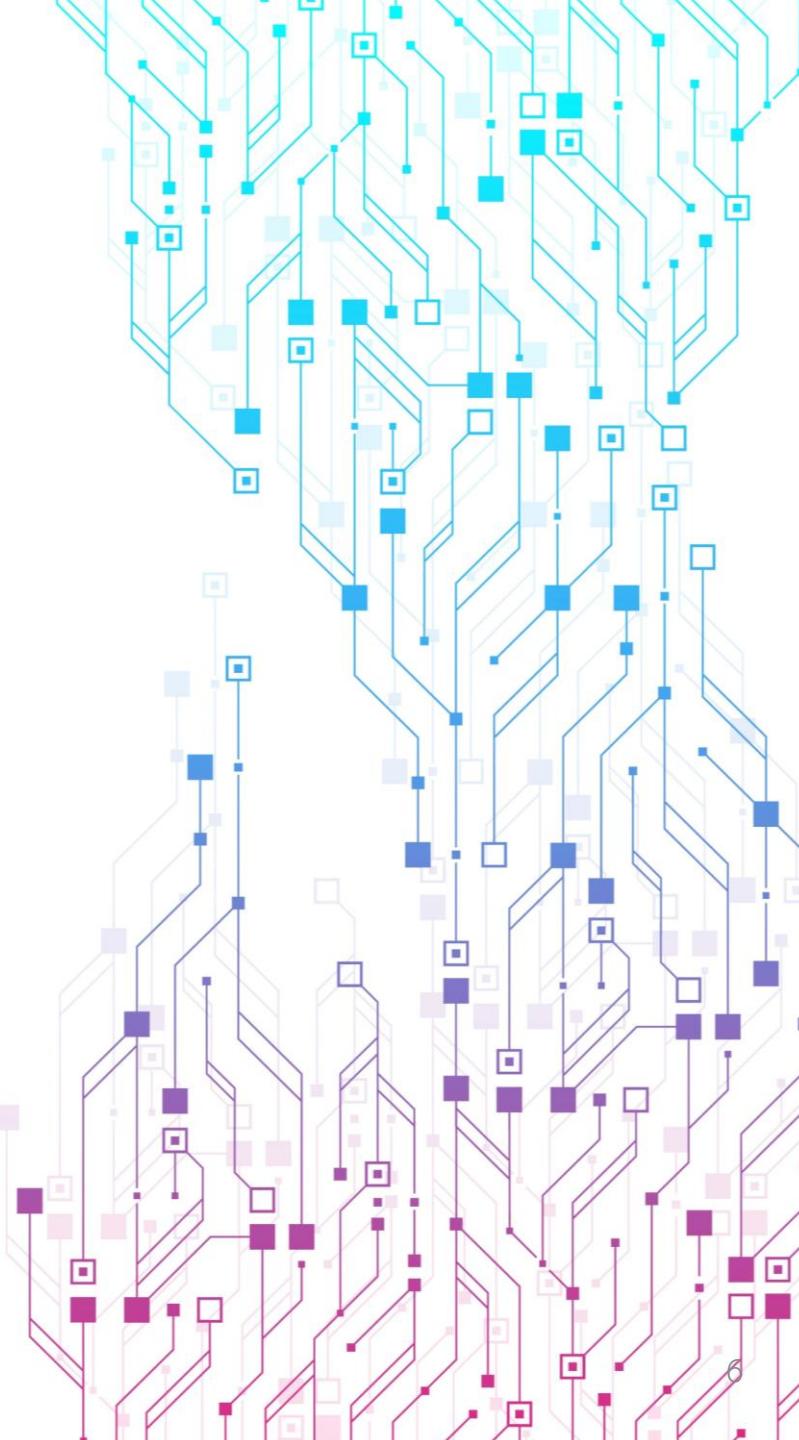
- Discover basic digital logic gates and use them to build logic networks
- Describe logic circuit operation through
 - Truth tables
 - Timing diagrams
- Learn Boolean algebra axioms/theorems/properties
 - Check logic function equivalence
 - Find more efficient logic circuit implementations



Quick Outline

- Variables and functions
 - Single variable
 - Two variables
 - AND and OR
 - NOT
- Truth tables
- Precedence of operations
- Logic gates
- Analysis of a logic network
- Timing diagram
- Cost of a logic circuit
- Boolean algebra
 - Axioms
 - Theorems
 - Properties
- Venn diagram

Variables and Functions



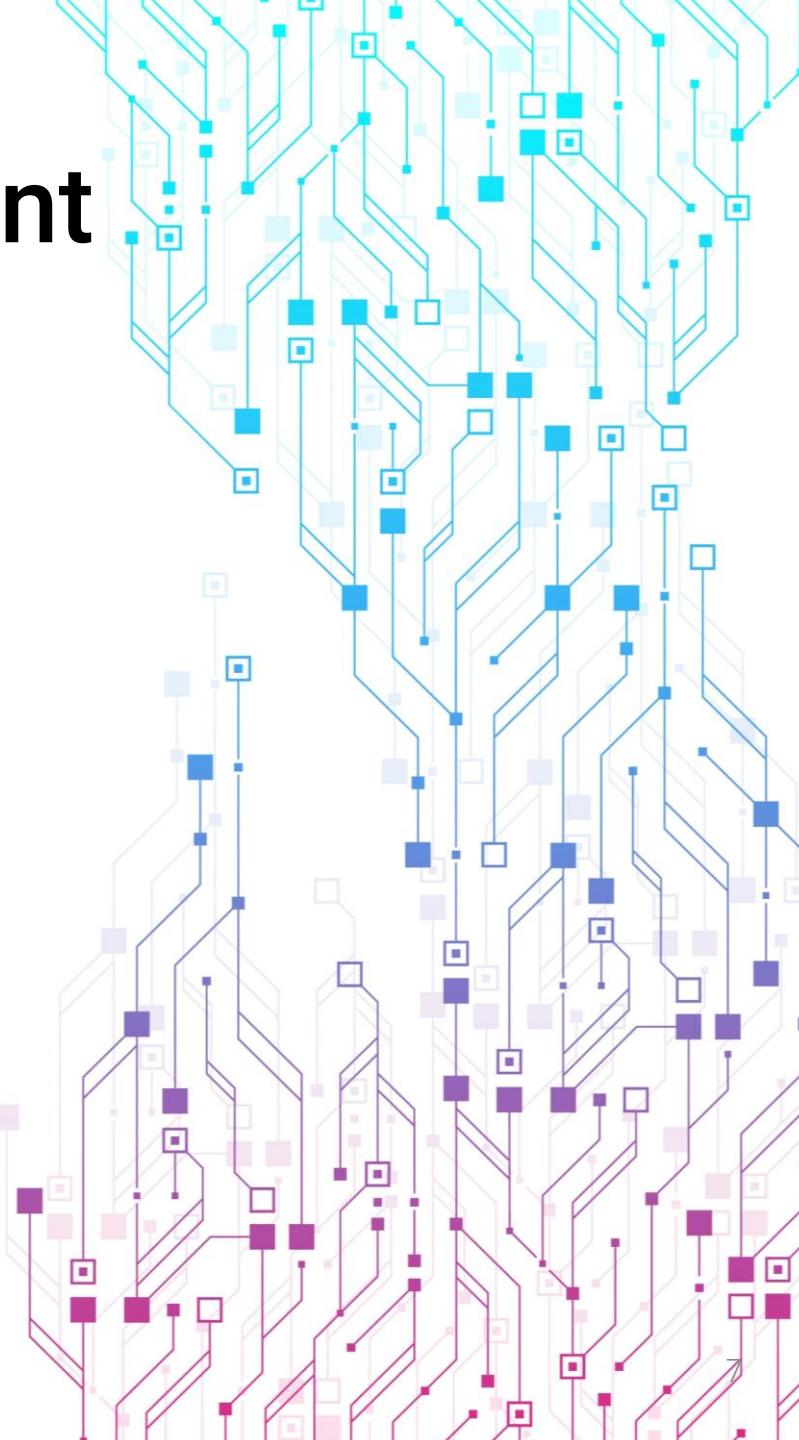
The Simplest Binary Logic Element

- ...a **switch** that has two states

- Open

- Closed

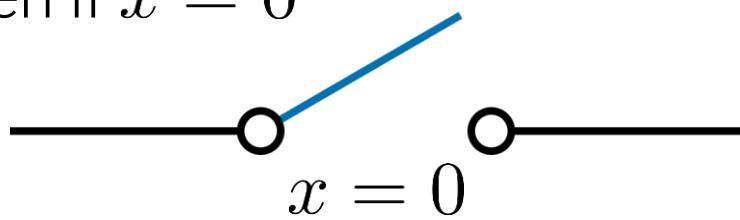
- In practice, implemented as transistors
 - A topic of another lecture



Two States of a Switch

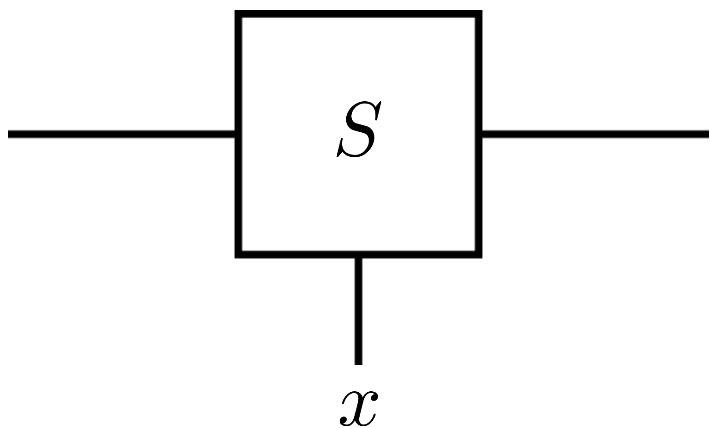
- If controlled by an **input variable** x , the switch is

- Open if $x = 0$



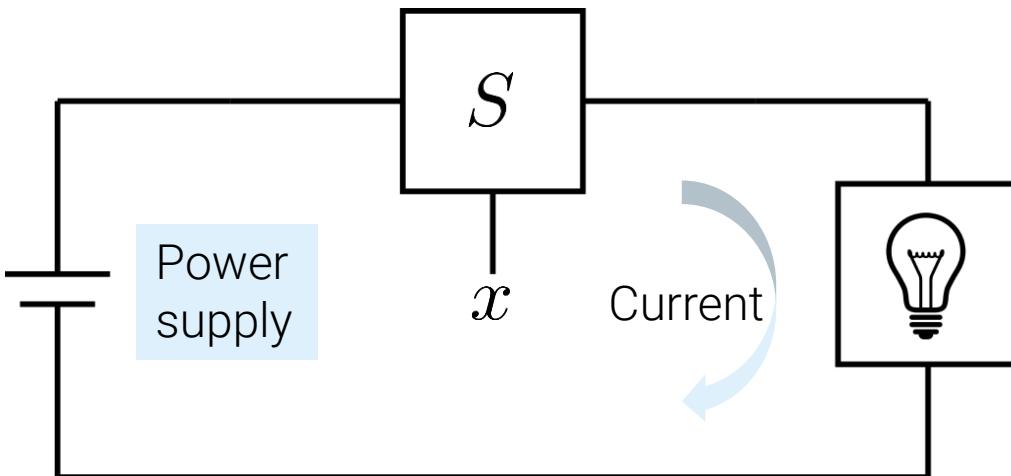
- Closed if $x = 1$

- The symbol for a switch controlled by an input variable

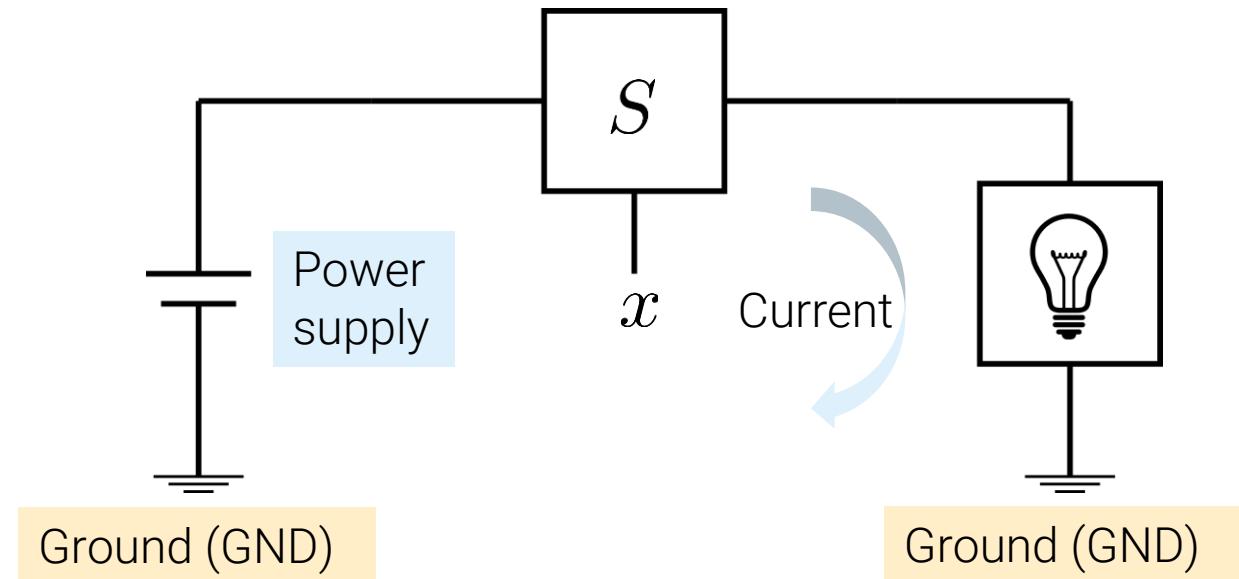


A Light Controlled by a Single Switch

- Simple connection to battery
 - Explicit return path connection



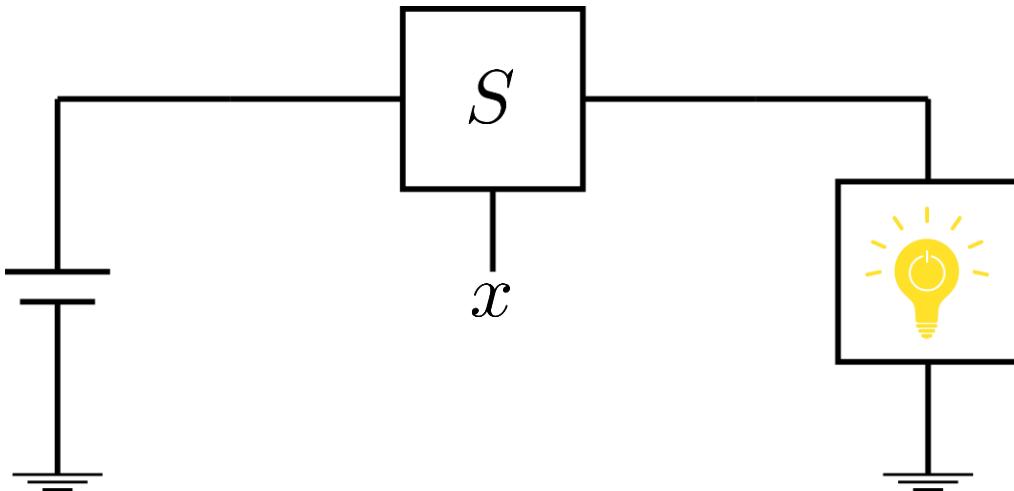
- Simple connection to battery
 - Using a ground connection as the return path (simplified view)



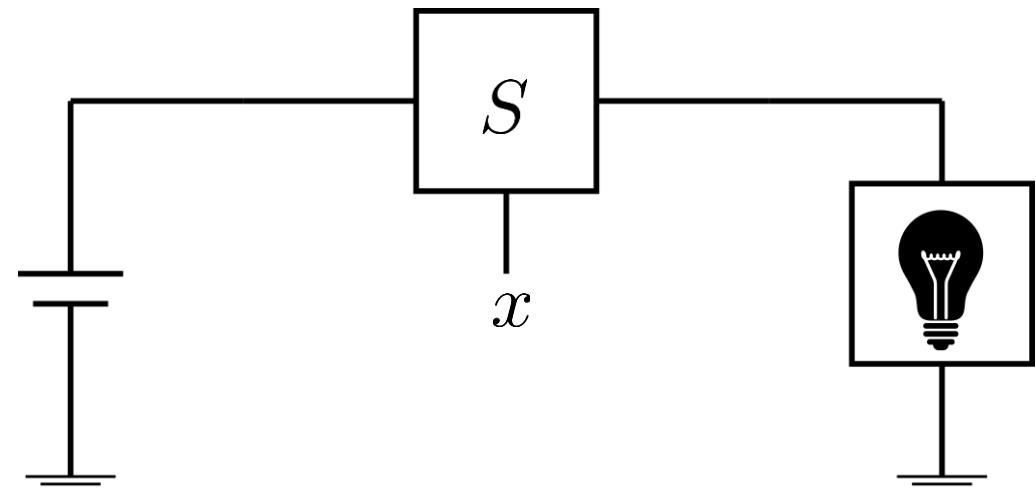
A Light Controlled by a Single Switch

Contd.

- When $x = 1$, the switch is closed, the current flows, the light is ON



- When $x = 0$, the switch is open, the current does not flow, the light is OFF



A Light Controlled by a Single Switch

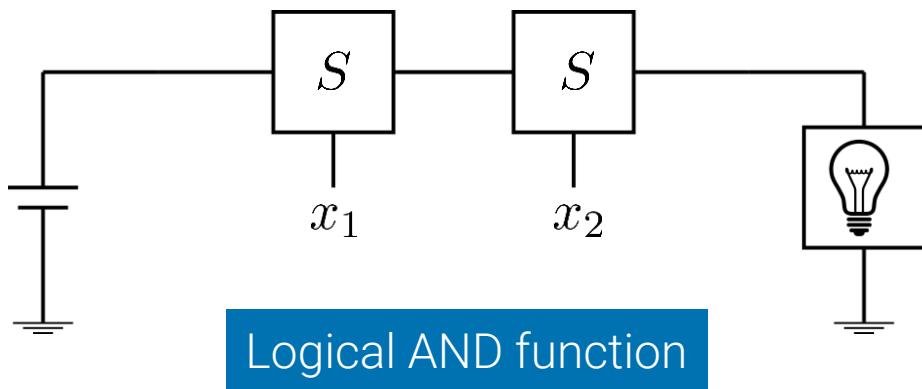
Logic function

- The **output** is defined as the state (or condition) of the light, L
 - If the light is ON, we will say that $L = 1$
 - Otherwise, $L = 0$
- We can describe the state of the light L with a **logical expression**
$$L(x) = x$$
- We say that L is a **logic function** of the **input variable** x

Two-Variable Logic Functions

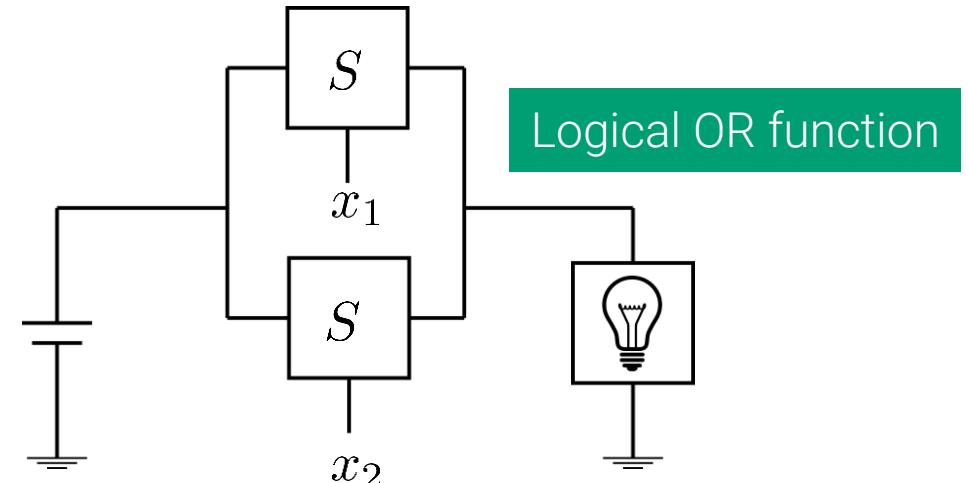
Series and Parallel Connections

- Consider the possibility of using two switches to control the light
- Series connection:



- Light will be turned ON only if both (the left **and** the right) switches are closed

- Parallel connection:

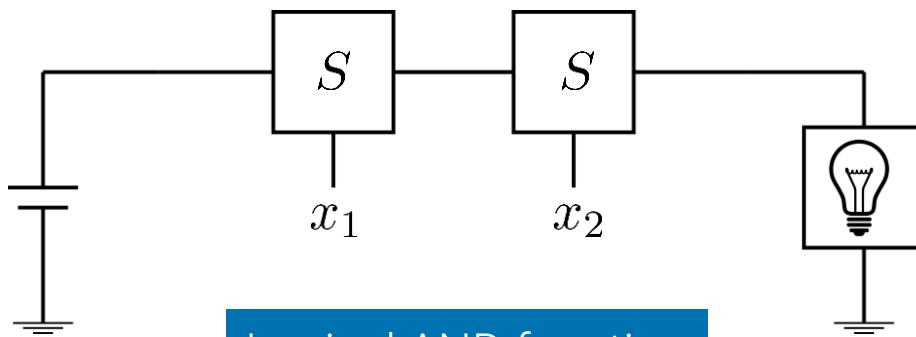


- Light will be turned ON if at least one (the upper **or** the lower) of the two switches is closed

Logical AND and OR Functions

Series and Parallel Connections, Contd.

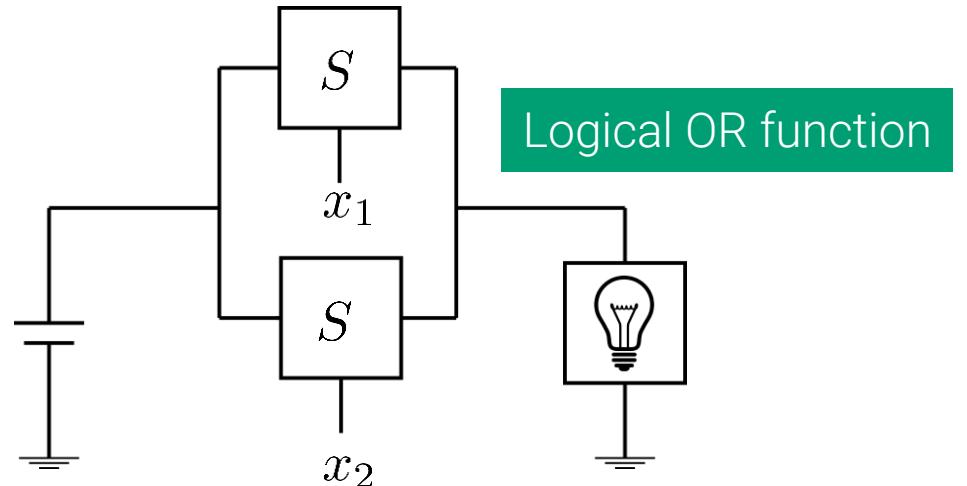
- Consider the possibility of using two switches to control the light
- Series connection:
- Parallel connection:



Logical AND function

$$L(x_1, x_2) = x_1 \cdot x_2$$

where $L = 1$ if $x_1 = 1$ and $x_2 = 1$,
 $L = 0$ otherwise.



Logical OR function

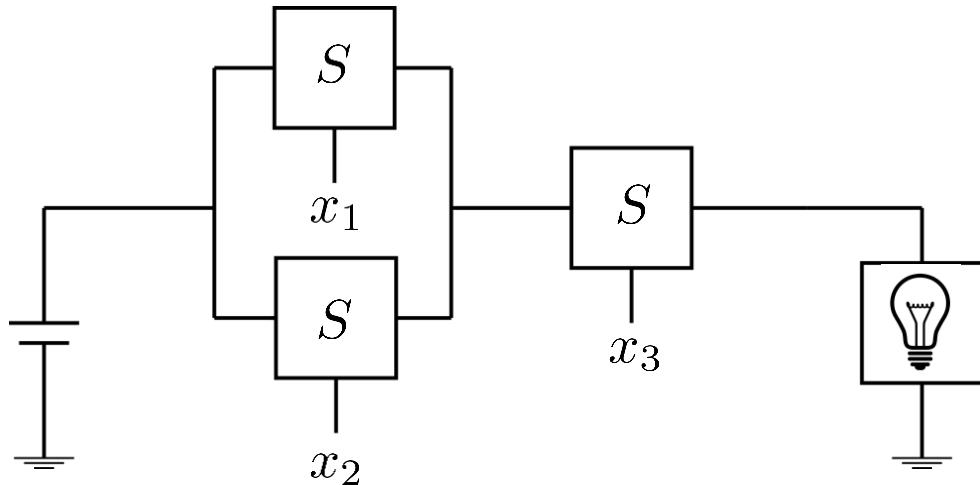
$$L(x_1, x_2) = x_1 + x_2$$

where $L = 1$ if $x_1 = 1$ or $x_2 = 1$, or if $x_1 = x_2 = 1$,
 $L = 0$ if $x_1 = x_2 = 0$.

Two-Variable Logic Functions

Series-Parallel Connections

- The AND and OR functions are two of the most important logic functions and can be used (together with some other simple functions) as building blocks of all logic circuits
 - Example: A series-parallel connection of three switches



$$L(x_1, x_2, x_3) = (x_1 + x_2) \cdot x_3$$

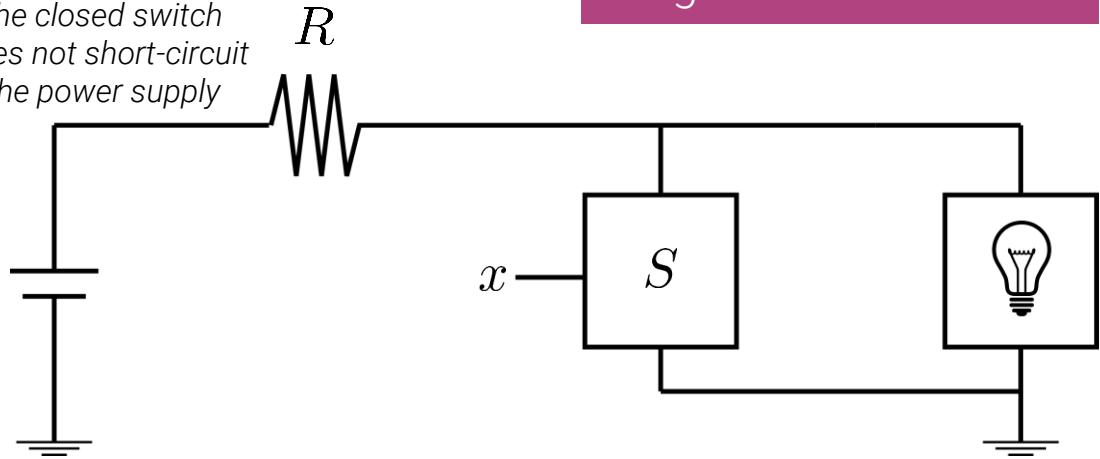
where $L = 1$ if $x_3 = 1$ and, at the same time, at least one of the x_1 and x_2 is equal to 1.

Logic Complement Operation

Inversion

- We assumed positive action occurs when the switch is closed ($x = 1$: light ON)
- It is equally relevant to consider the contrary: positive action occurs when the switch is open ($x = 0$: light ON)
- **Complement (NOT)** is the 3rd most basic logic operation

Extra resistance ensures the closed switch does not short-circuit the power supply

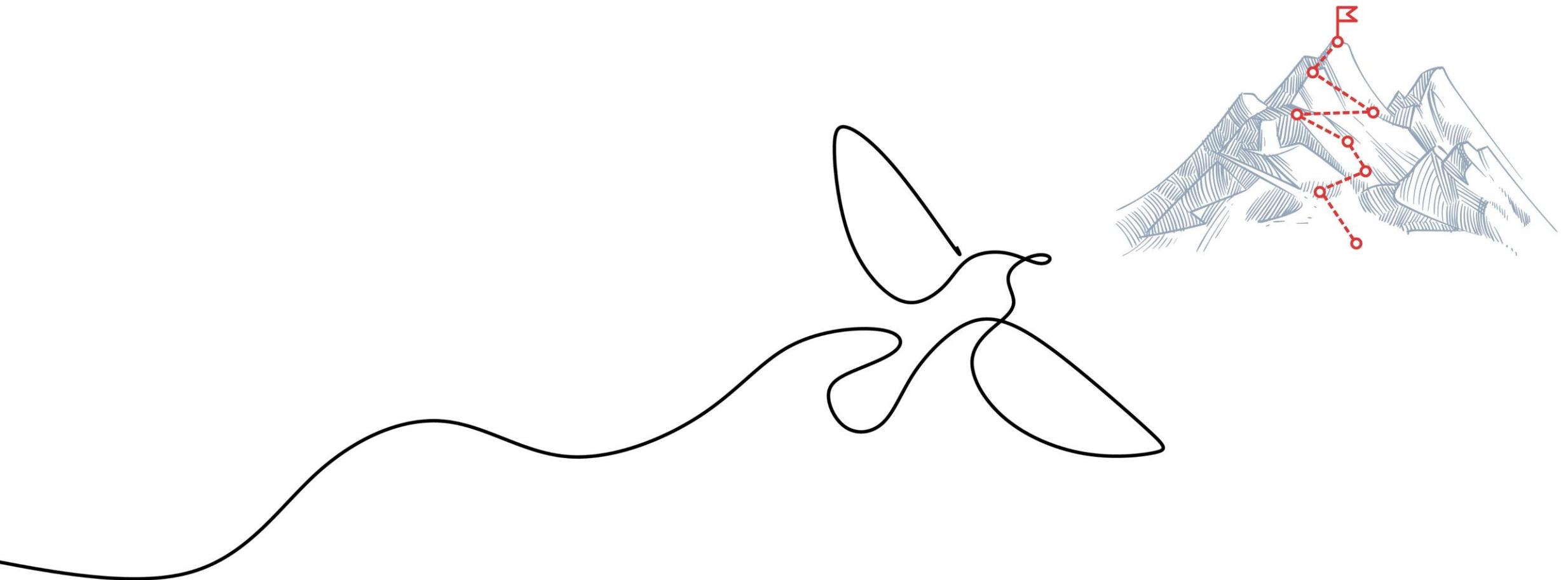


$$L(x) = \bar{x}$$

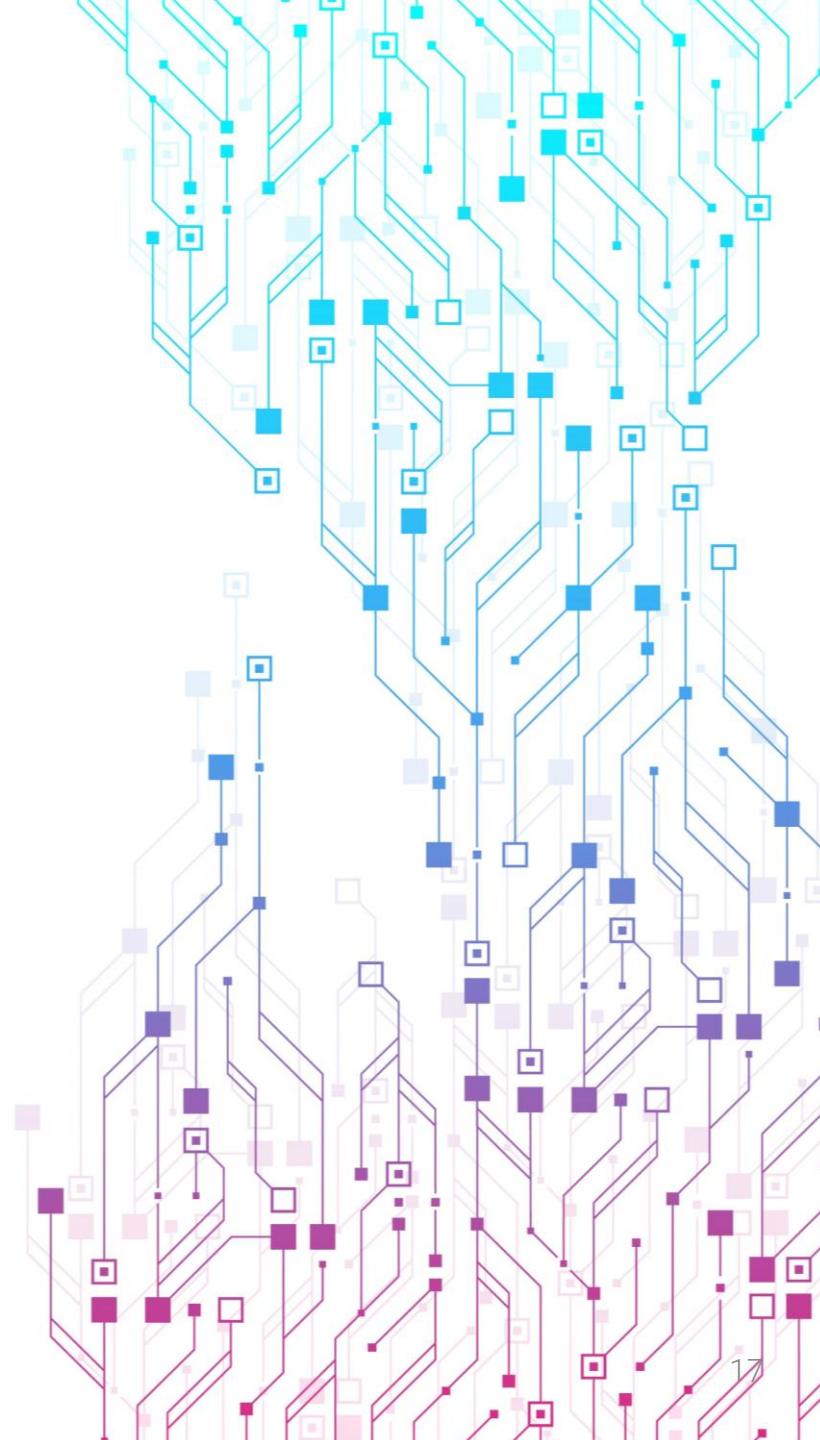
NOT (complement) operator

where $L = 1$ if $x = 0$

$L = 0$ if $x = 1$.



Truth Tables



Logic AND and OR Operations

Truth Tables

- Logical operations can be defined in the form of a **truth table**

- AND**

$$L(x_1, x_2) = x_1 \cdot x_2$$

where $L = 1$ if $x_1 = 1$ and $x_2 = 1$,
 $L = 0$ otherwise.

- OR**

$$L(x_1, x_2) = x_1 + x_2$$

where $L = 1$ if $x_1 = 1$ or $x_2 = 1$, or if $x_1 = x_2 = 1$,
 $L = 0$ if $x_1 = x_2 = 0$.

		AND	OR
x_1	x_2	$x_1 \cdot x_2$	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Logic AND and OR Operations

Truth Tables

- For n logic variables, there are 2^n rows in the **truth table**

- AND**

$$L(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot x_3$$

where $L = 1$ if $x_1 = x_2 = x_3 = 1$,
 $L = 0$ otherwise.

- OR**

$$L(x_1, x_2, x_3) = x_1 + x_2 + x_3$$

where $L = 0$ if $x_1 = x_2 = x_3 = 0$,
 $L = 1$ otherwise.

x_1	x_2	x_3	$x_1 \cdot x_2 \cdot x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Logic Complement Operation

Truth Tables

- Logical operations can be defined in the form of a **truth table**
 - **NOT**

$$L(x) = \bar{x}$$

where $L = 1$ if $x = 0$

$L = 0$ if $x = 1$.

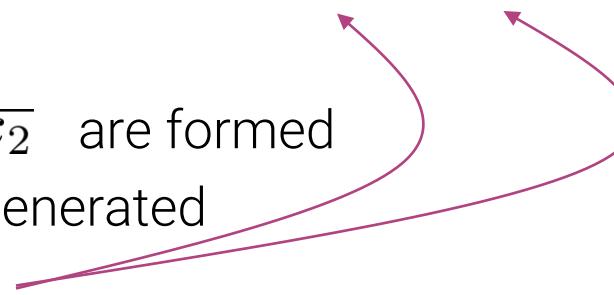
NOT	
x	\bar{x}
0	1
1	0

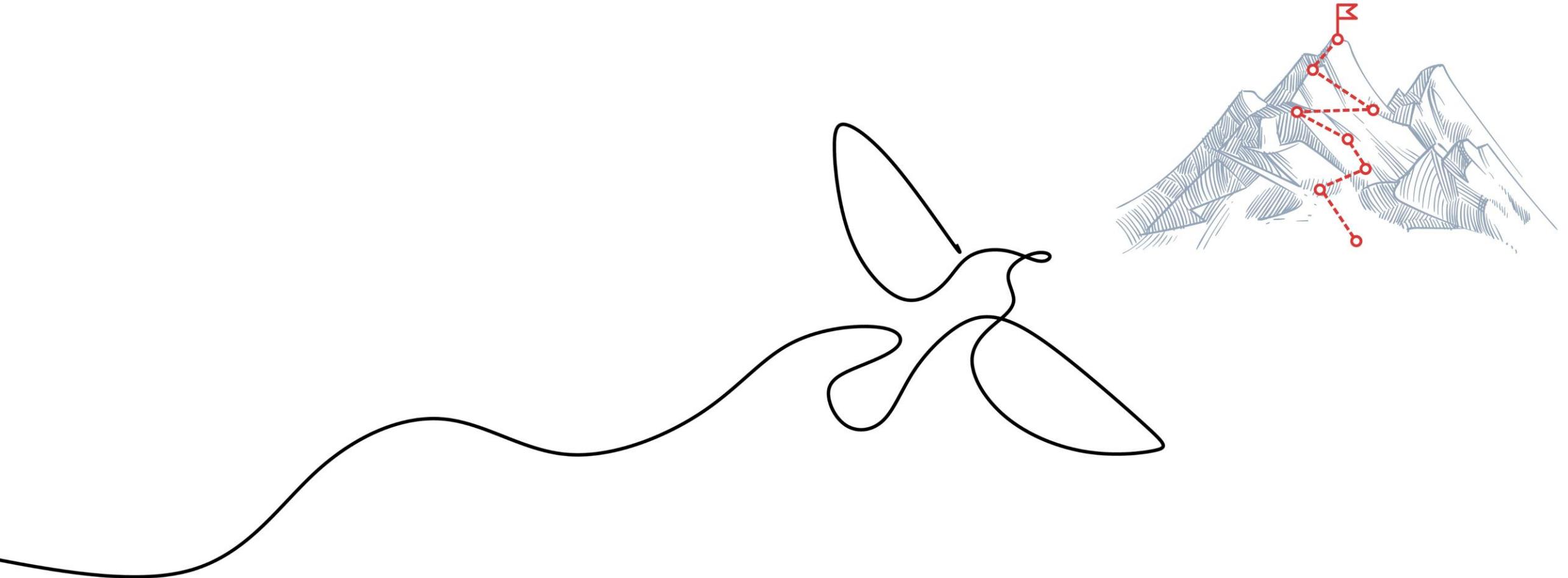
Precedence of Operations

- Parentheses can be used to indicate the order of operations
- Alternatively, to help the **readability** of logic expressions by reducing the number of parentheses, a convention states:
 - In the absence of parentheses, operations in a logic expression must be performed in the order **first NOT, then AND, and then OR**
 - Example:

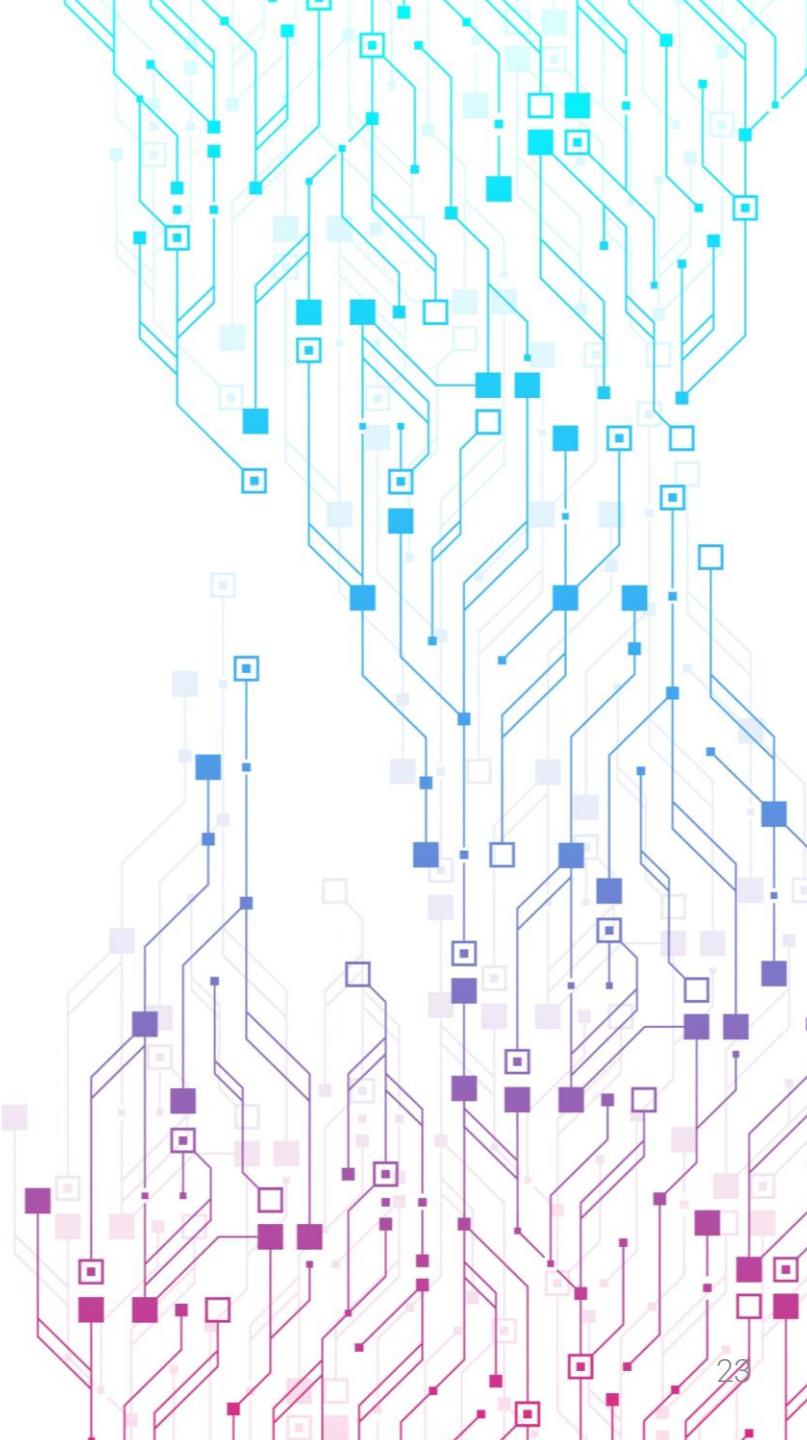
$$x_1 \cdot x_2 + \overline{x_1} \cdot \overline{x_2} \equiv ((x_1 \cdot x_2) + ((\overline{x_1}) \cdot (\overline{x_2}))) \equiv x_1 x_2 + \overline{x_1} \overline{x_2}$$

- First, complements $\overline{x_1}, \overline{x_2}$ are generated
- Then, the product terms $x_1 \cdot x_2$ and $\overline{x_1} \cdot \overline{x_2}$ are formed
- Lastly, the sum of the two product terms is generated
- Note: We can omit the multiplication symbol





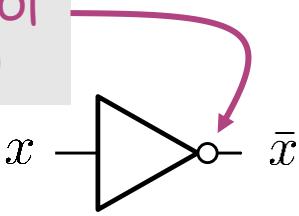
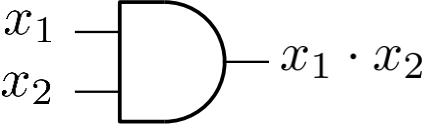
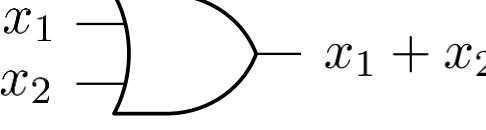
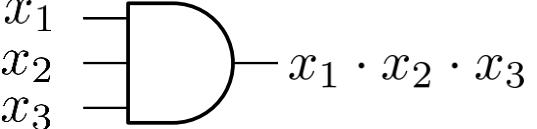
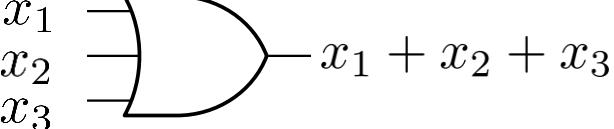
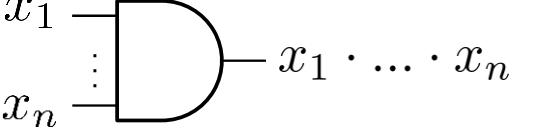
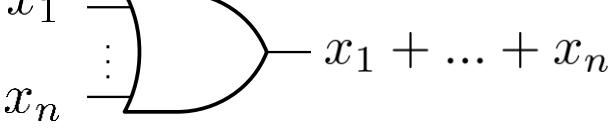
Logic Gates



Logic Gates and Networks

- AND/OR/NOT can implement logic functions of any complexity
- Electronically, the operations are implemented with transistors, resulting in a circuit called a **logic gate**
- A logic gate has
 - One or more **inputs**
 - An **output**, which is a function of the inputs
- To visualize **logic circuits** (i.e., networks of logic gates), we draw schematics composed of logic gates

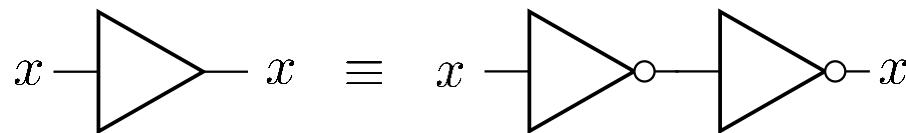
AND/OR/NOT Graphical Symbols

NOT gate	AND gate	OR gate
<p>Inversion symbol (complement)</p>  $f(x) = \bar{x}$	 $x_1 \quad x_2 \longrightarrow x_1 \cdot x_2$ $f(x_1, x_2) = x_1 \cdot x_2$	 $x_1 \quad x_2 \longrightarrow x_1 + x_2$ $f(x_1, x_2) = x_1 + x_2$
	 $x_1 \quad x_2 \quad x_3 \longrightarrow x_1 \cdot x_2 \cdot x_3$ $f(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot x_3$	 $x_1 \quad x_2 \quad x_3 \longrightarrow x_1 + x_2 + x_3$ $f(x_1, x_2, x_3) = x_1 + x_2 + x_3$
	 $x_1 \quad \vdots \quad x_n \longrightarrow x_1 \cdot \dots \cdot x_n$ $f(x_1, \dots, x_n) = x_1 \cdot \dots \cdot x_n$	 $x_1 \quad \vdots \quad x_n \longrightarrow x_1 + \dots + x_n$ $f(x_1, \dots, x_n) = x_1 + \dots + x_n$

Variants of Single-Input Gates

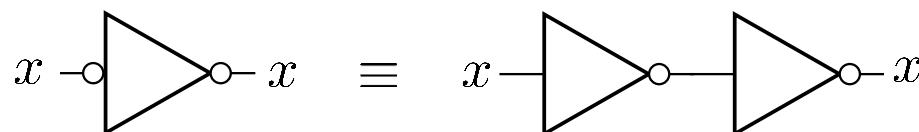
Inverter, Buffer

- **Buffer**, passes the input to the output unchanged



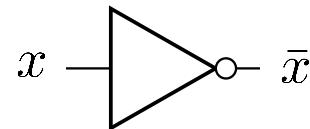
$$f(x) = x$$

- Buffer, with in/out inversion



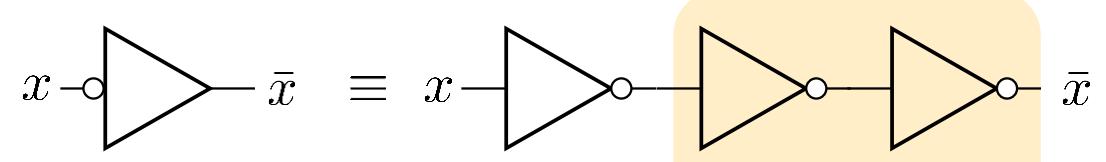
$$f(x) = x$$

- Inverter, passes the input to the output after inverting its polarity



$$f(x) = \bar{x}$$

- Buffer, with input inversion

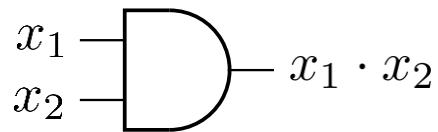


$$f(x) = \bar{x}$$

Variants of AND Gates

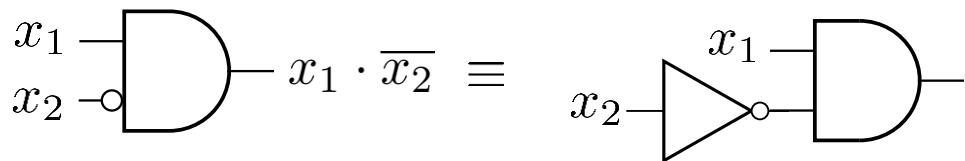
NAND gate

- AND gate, basic



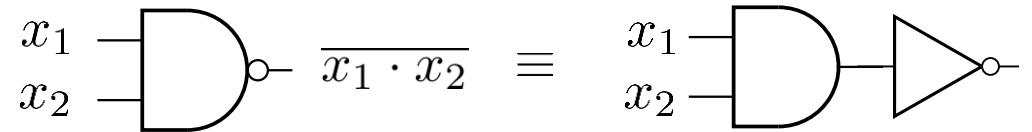
$$f(x_1, x_2) = x_1 \cdot x_2$$

- AND gate, one input inverted



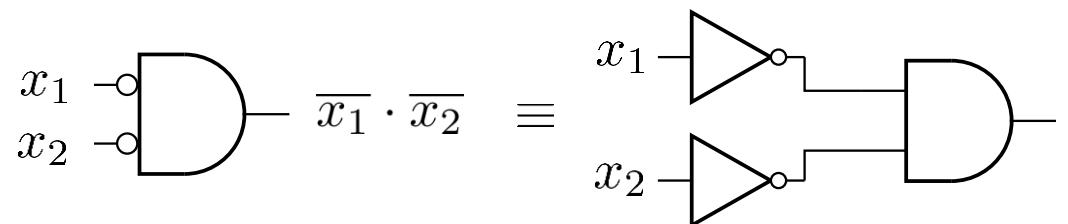
$$f(x_1, x_2) = x_1 \cdot \overline{x_2}$$

- **NAND gate**, equiv. to AND gate with the output inverted



$$f(x_1, x_2) = \overline{x_1 \cdot x_2}$$

- AND gate, both inputs inverted

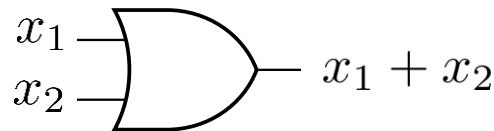


$$f(x_1, x_2) = \overline{x_1} \cdot \overline{x_2}$$

Variants of OR Gates

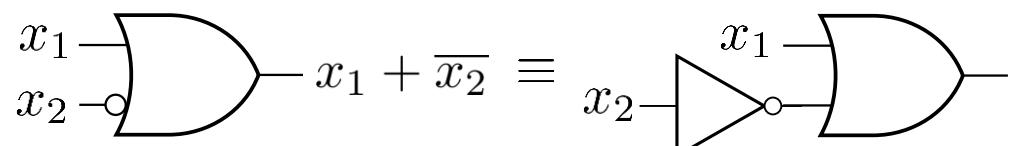
NOR gate

- OR gate, basic



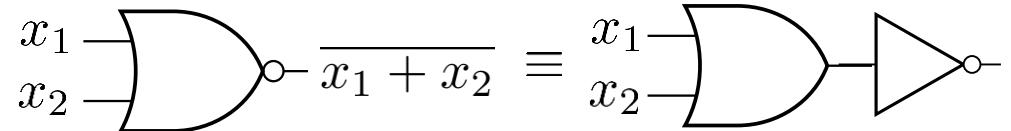
$$f(x_1, x_2) = x_1 + x_2$$

- OR gate, one input inverted



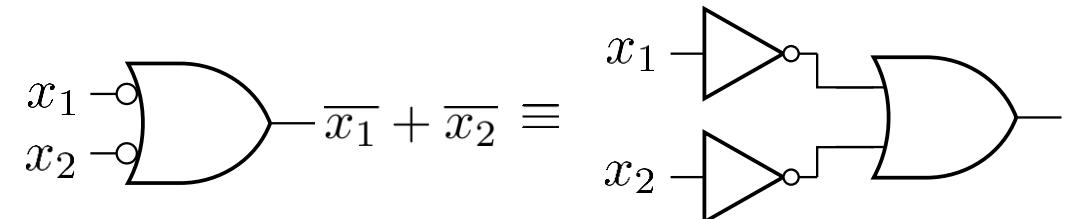
$$f(x_1, x_2) = x_1 + \bar{x}_2$$

- **NOR gate**, equiv. to OR gate with the output inverted



$$f(x_1, x_2) = \bar{x}_1 + \bar{x}_2$$

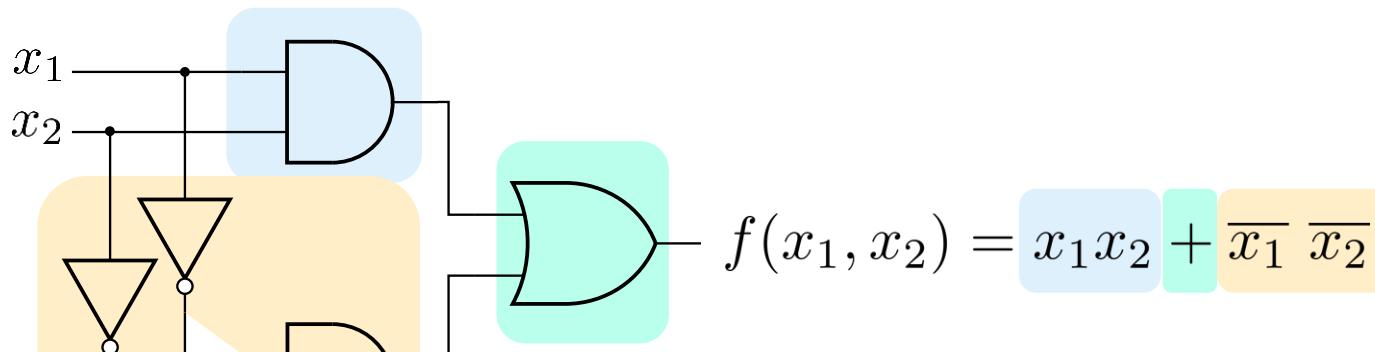
- OR gate, both inputs inverted



$$f(x_1, x_2) = \bar{x}_1 + \bar{x}_2$$

Example Logic Network

- AND/OR/NOT can implement logic functions of any complexity



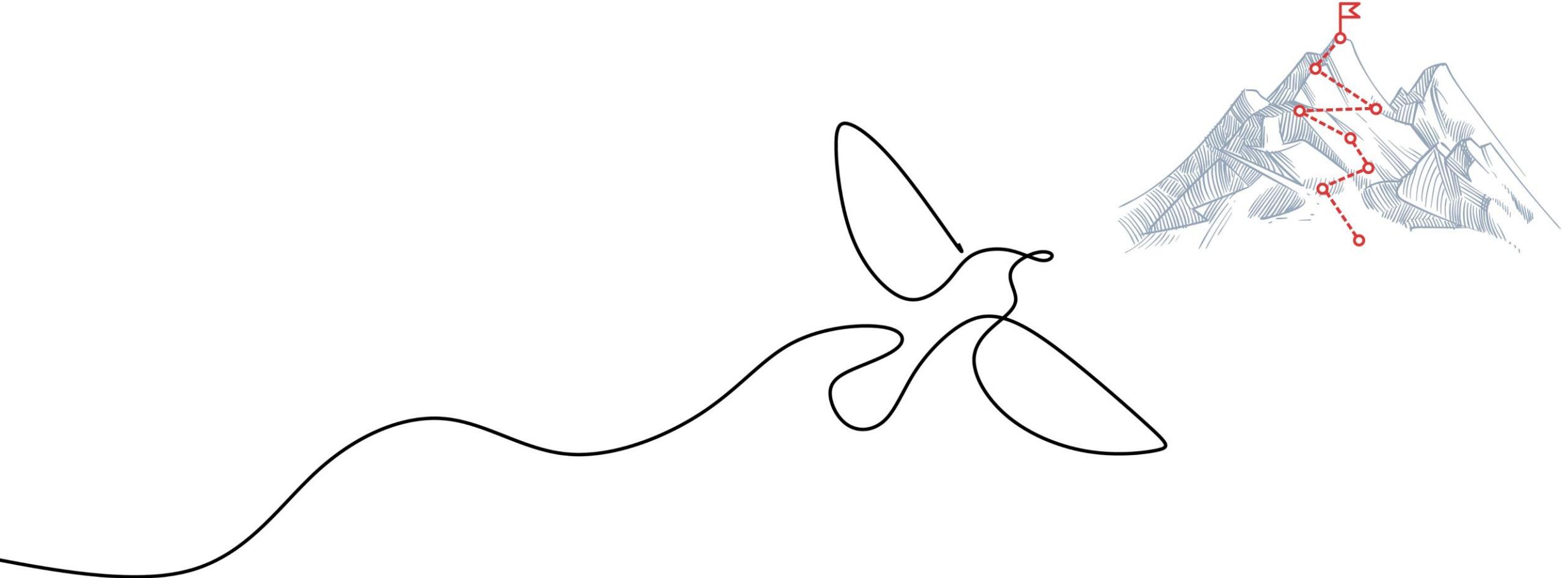
$$f(0, 0) = 0 \cdot 0 + \overline{0} \cdot \overline{0} = 1$$

$$f(0, 1) = 0 \cdot 1 + \overline{0} \cdot \overline{1} = 0$$

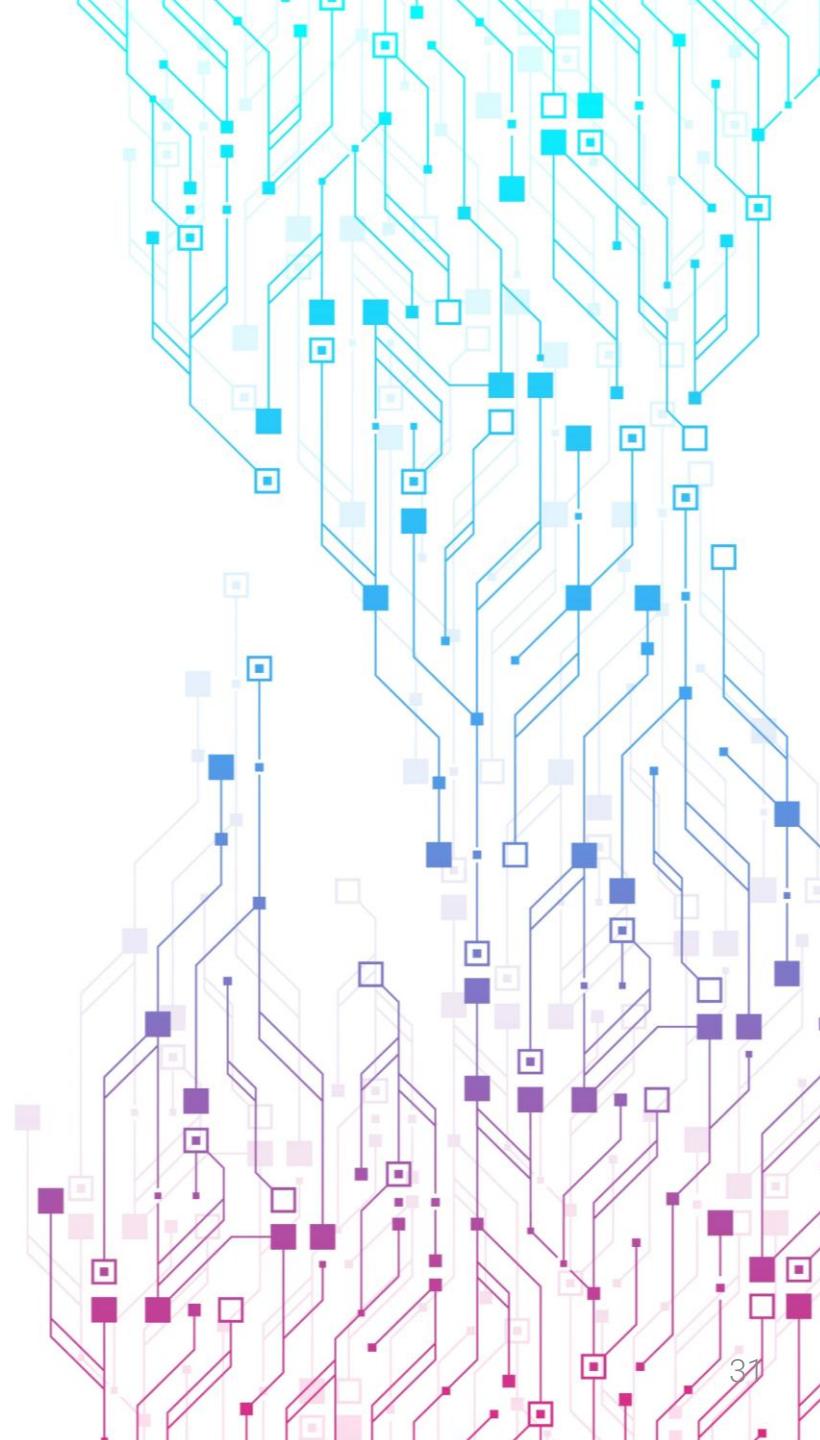
$$f(1, 0) = 1 \cdot 0 + \overline{1} \cdot \overline{0} = 0$$

$$f(1, 1) = 1 \cdot 1 + \overline{1} \cdot \overline{1} = 1$$

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	0
1	0	0
1	1	1

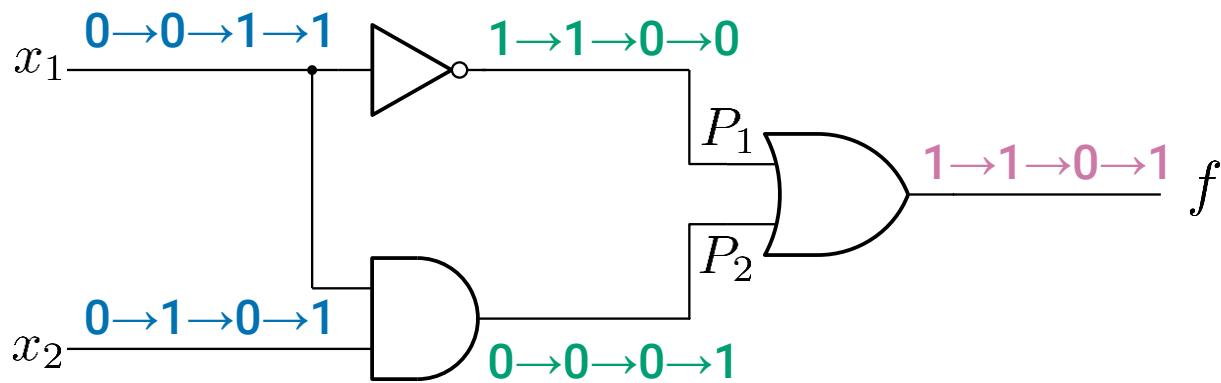


Analysis of a Logic Network



Analysis of a Logic Network

- Example logic network
 - The sequence of input values in the truth table visualized in the network
 - Any sequence can be visualized in a **timing diagram**

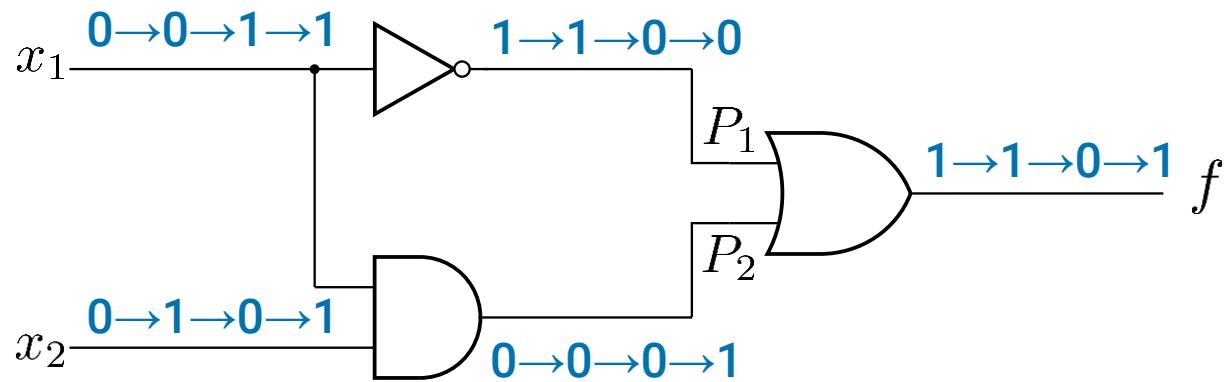


$$f(x_1, x_2) = \overline{x_1} + x_1 x_2$$

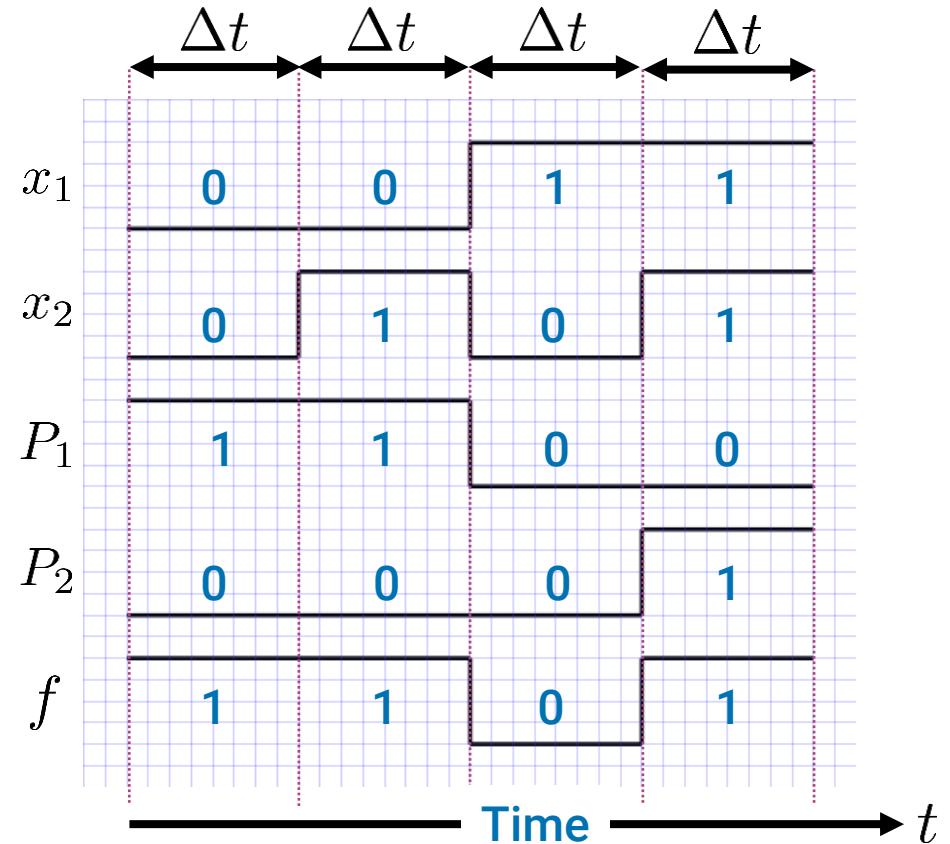
x_1	x_2	$f(x_1, x_2)$	P_1	P_2
0	0	1	1	0
0	1	1	1	0
1	0	0	0	0
1	1	1	0	1

Timing Diagram

- The **timing diagram** shows the changes in waveforms of the internal signals of a logic network and its outputs resulting from the inputs changing their values over time



- Note: In reality, transitions between logical levels take some time and gates may have different delays

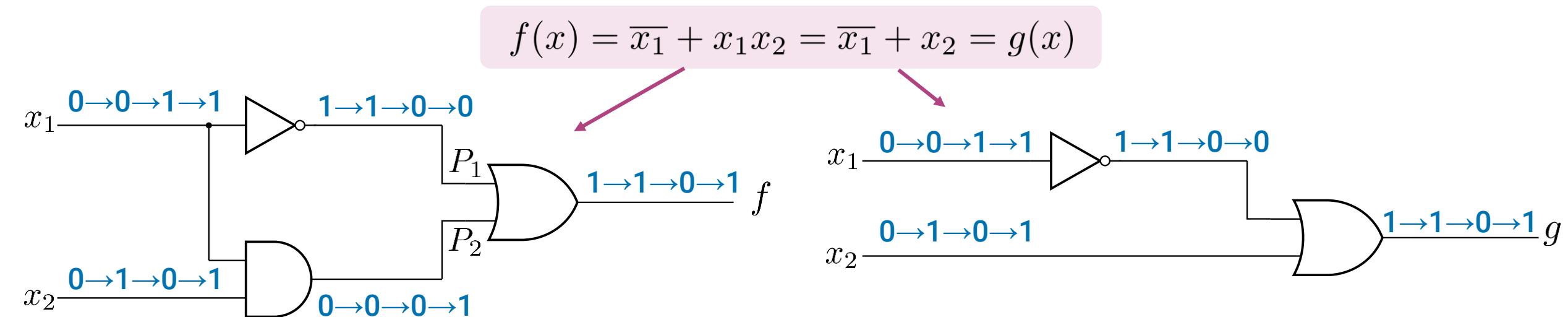


Cost of a Logic Circuit

- The total cost of a logic circuit is typically defined as the total **number of gates plus** the total **number of gate inputs**
 - Each logic gate (AND, OR, NOT, etc.) contributes to the cost
 - More inputs to gates often mean larger, more costly gates
 - In simplified cost models, only the number of gates might be considered
 - In detailed cost models, weights may be assigned to different types of gates, depending on their complexity or physical implementation

Functionally Equivalent Networks

- A logic function can be implemented with a variety of different logic networks of different cost



- The above two networks are functionally **equivalent**
 - For the same input sequence, they produce the same output sequence

How To Check for Equivalence?

$$f(x_1, \dots, x_n) = g(x_1, \dots, x_n), \forall x_1, \dots, x_n$$

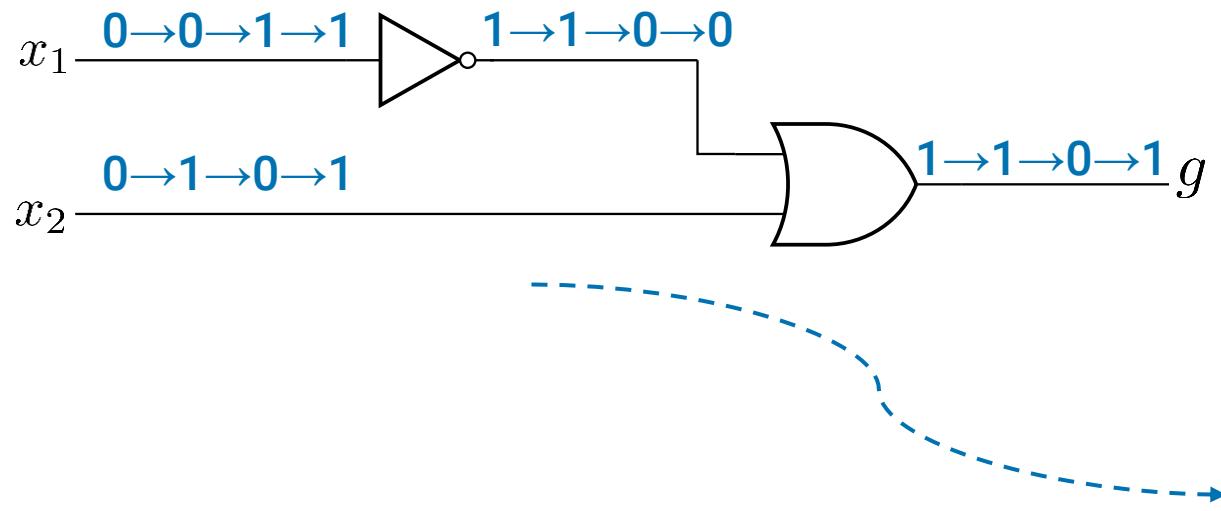
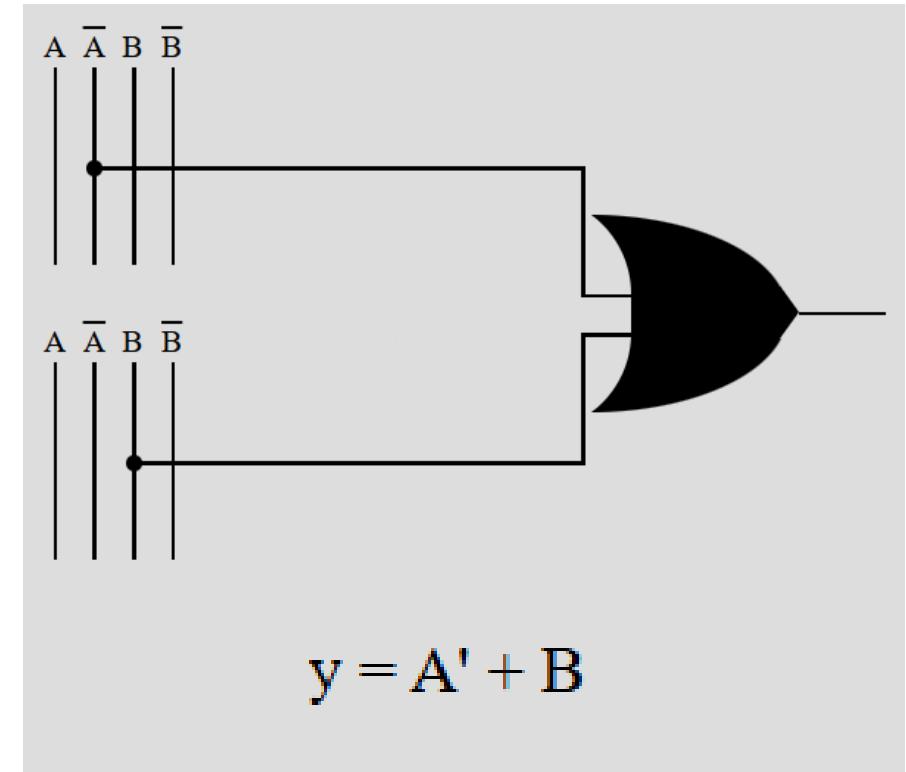
- Two logic networks are equivalent if
 - Their **truth tables** are the same (**perfect induction**)
 - There exists a sequence of algebraic manipulations to transform one logic expression to the other
 - These algebraic manipulations are defined as **Boolean algebra**
 - Their **Venn diagrams** are the same

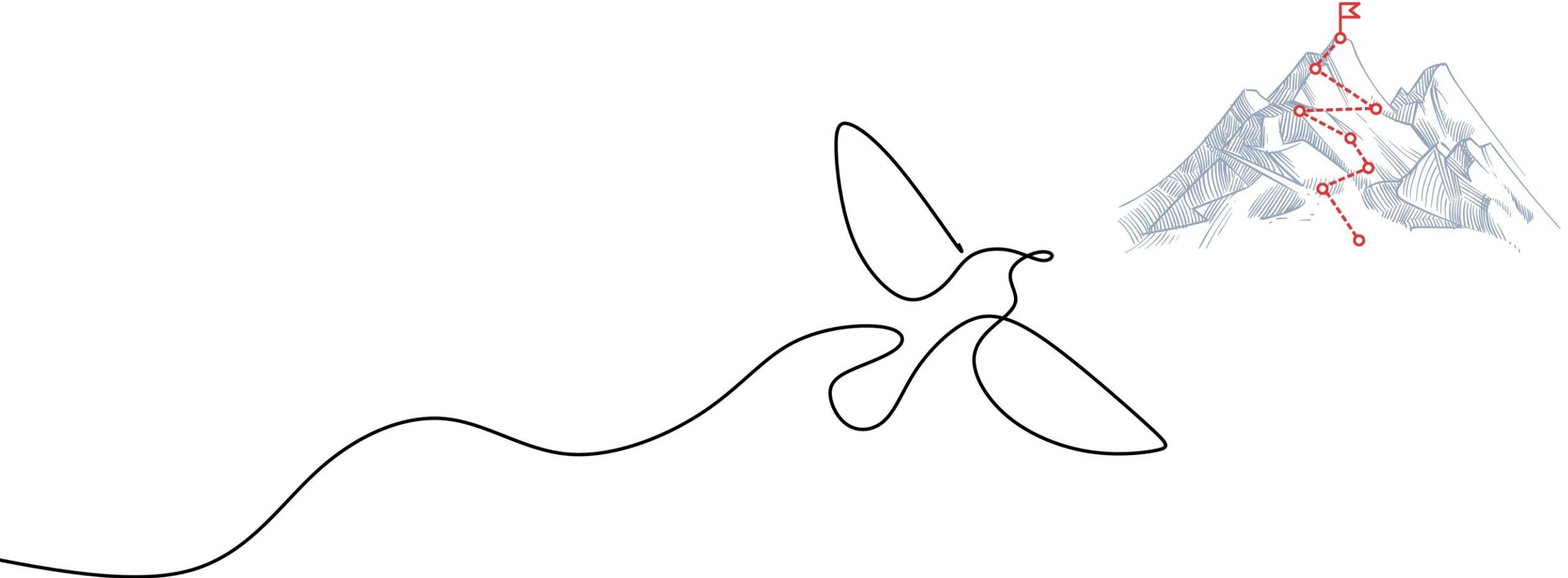
How To Find The Best Equivalent Network?

- Logic function can be implemented with a variety of different networks. How does one find the best (simplest, least costly)?
- The process of finding the best equivalent logical expression describing a logic network is called **minimization**
 - **Approach 1:** Apply a sequence of algebraic transformation
 - Not always obvious when to apply which transformation, tedious, impractical
 - **Approach 2:** Use Karnaugh maps (an alternative to the truth table)
 - Simpler, but quickly becomes unmanageable by hand (up to 4 inputs acceptable)
- 🏆 **Approach 3:** Automated techniques in synthesis software tools

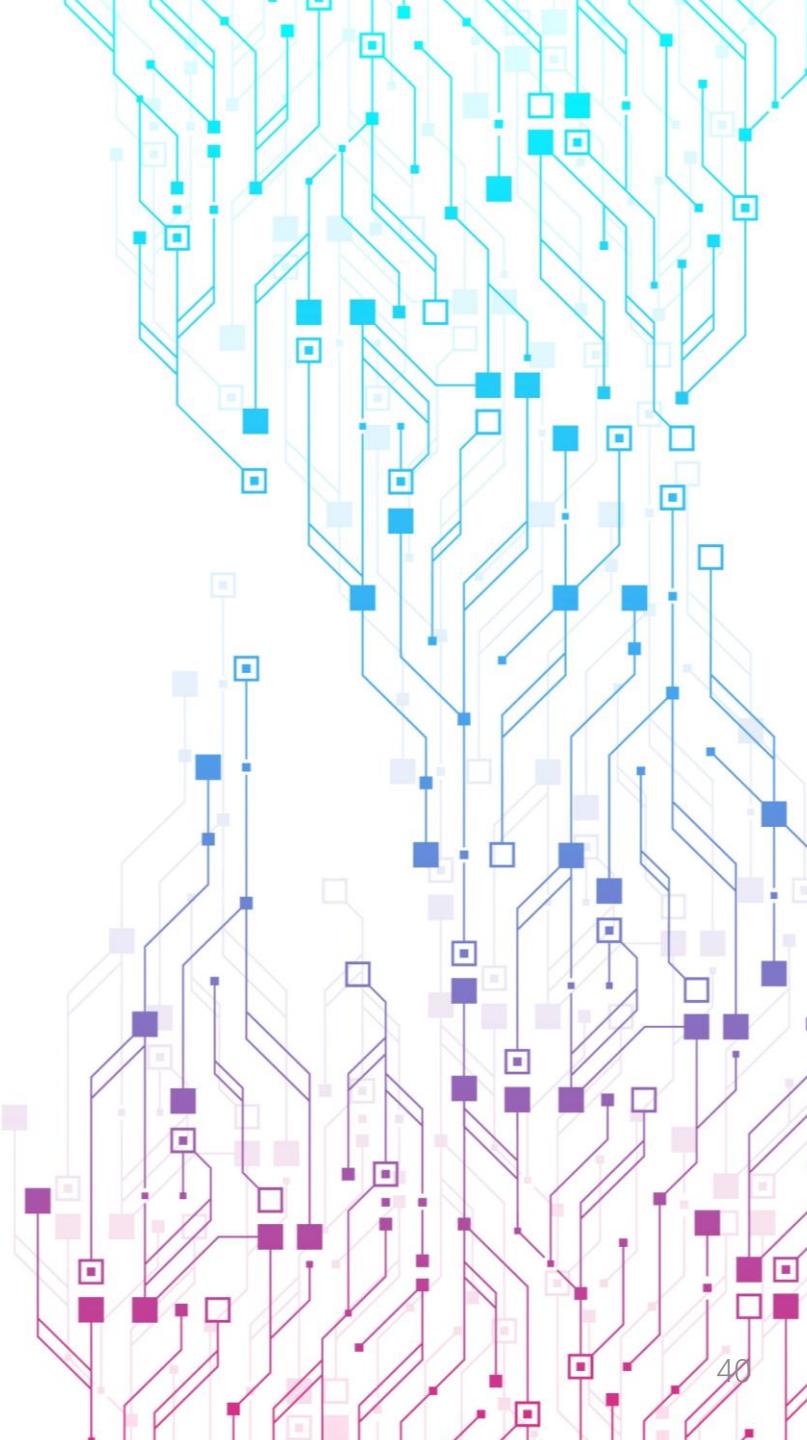
Logic Circuit Simplification

- Online resource on logic circuit simplification using Karnaugh maps for enthusiasts: <http://www.32x8.com/index.html>

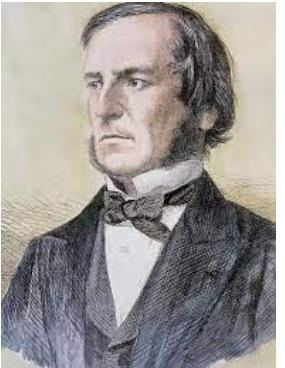




Boolean Algebra



A Bit of History



- In 1849, George Boole published a scheme for the algebraic description of processes involved in logical thought and reasoning
- This scheme and its refinements became known as Boolean algebra

- In the late 1930s, Claude Shannon showed that Boolean algebra provides an effective means of describing circuits built with switches
 - Therefore, Boolean algebra can be used to describe logic circuits
- Boolean algebra is a powerful technique for designing and analyzing logic circuits; it is the foundation for our modern digital technology

Axioms

Boolean Algebra

- Like any algebra, Boolean algebra is based on a set of rules derived from a small number of basic assumptions (i.e., **axioms**)
- Let us assume that Boolean algebra involves elements that take on one of the two binary values. Assume the following axioms are true:

$$1a. \quad 0 \cdot 0 = 0$$

$$1b. \quad 1 + 1 = 1$$

$$2a. \quad 1 \cdot 1 = 1$$

$$2b. \quad 0 + 0 = 0$$

$$3a. \quad 0 \cdot 1 = 1 \cdot 0 = 0$$

$$3b. \quad 1 + 0 = 0 + 1 = 1$$

$$4a. \quad \text{If } x = 0, \text{ then } \bar{x} = 1$$

$$4b. \quad \text{If } x = 1, \text{ then } \bar{x} = 0$$

- From the axioms, we can define some rules (i.e., **theorems**) for dealing with single Boolean variables

Axioms

Analogy with Logic Gates

$$1a. 0 \cdot 0 = 0$$

$$1b. 1 + 1 = 1$$

$$2a. 1 \cdot 1 = 1$$

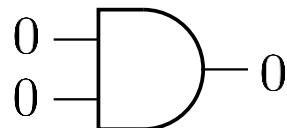
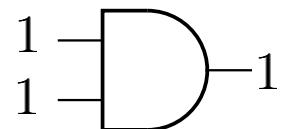
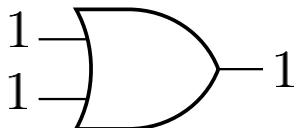
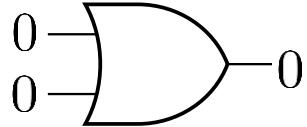
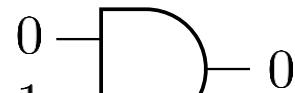
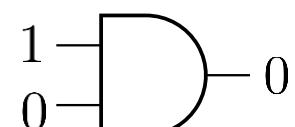
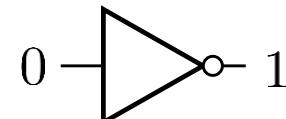
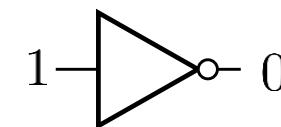
$$2b. 0 + 0 = 0$$

$$3a. 0 \cdot 1 = 1 \cdot 0 = 0$$

$$3b. 1 + 0 = 0 + 1 = 1$$

$$4a. \text{If } x = 0, \text{ then } \bar{x} = 1$$

$$4b. \text{If } x = 1, \text{ then } \bar{x} = 0$$



Single-Variable Theorems

Boolean Algebra

- If x is a Boolean variable, then the following theorems hold:

$$5a. \ x \cdot 0 = 0$$

$$5b. \ x + 1 = 1$$

$$6a. \ x \cdot 1 = x$$

$$6b. \ x + 0 = x$$

$$7a. \ x \cdot x = x$$

$$7b. \ x + x = x$$

$$8a. \ x \cdot \bar{x} = 0$$

$$8b. \ x + \bar{x} = 1$$

$$9. \ \bar{\bar{x}} = x$$

- Theorems grouped in pairs, emphasizing **the principle of duality**
 - **Dual form** is obtained by replacing all $+$ operators with \cdot operators, and vice versa; and by replacing all 0s with 1s, and vice versa
- To prove the theorems, apply **perfect induction** (i.e., substitute the variable with 1 or 0) and use the axioms

Single-Variable Theorems

Analogy with Logic Gates

$$5a. \ x \cdot 0 = 0$$

$$5b. \ x + 1 = 1$$

$$6a. \ x \cdot 1 = x$$

$$6b. \ x + 0 = x$$

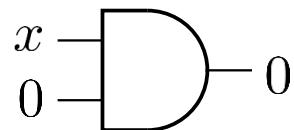
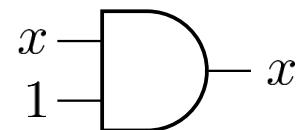
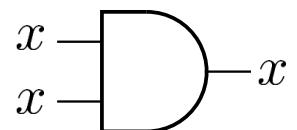
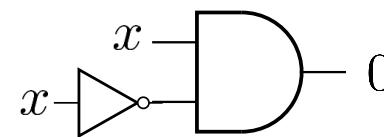
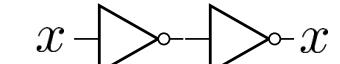
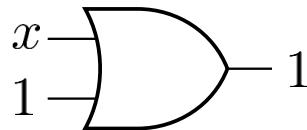
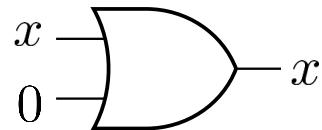
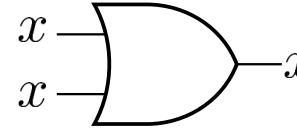
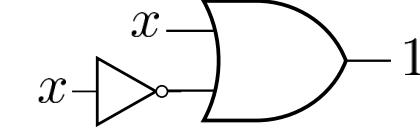
$$7a. \ x \cdot x = x$$

$$7b. \ x + x = x$$

$$8a. \ x \cdot \bar{x} = 0$$

$$8b. \ x + \bar{x} = 1$$

$$9. \ \bar{\bar{x}} = x$$



Single-Variable Theorem Proof

Using Perfect induction

- Let us prove the validity of theorem 5a. $x \cdot 0 = 0$

- Perfect induction:

- $x = 0$: the theorem states $0 \cdot 0 = 0$

This is true according to axiom 1a.

$$1a. \ 0 \cdot 0 = 0$$

$$1b. \ 1 + 1 = 1$$

- $x = 1$: the theorem states $1 \cdot 0 = 0$

This is true according to axiom 3a.

$$3a. \ 0 \cdot 1 = 1 \cdot 0 = 0$$

$$3b. \ 1 + 0 = 0 + 1 = 1$$

Recall the truth table AND

	x_1	x_2	$x_1 \cdot x_2$
$x_1 \cdot 0$	0	0	0
	0	1	0
$x_1 \cdot 0$	1	0	0
	1	1	1

Two- and Three-Variable Properties

Boolean Algebra

- Given three Boolean variables, the following properties hold

Commutative

$$10a. \ x \cdot y = y \cdot x$$

$$10b. \ x + y = y + x$$

Associative

$$11a. \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$11b. \ x + (y + z) = (x + y) + z$$

Distributive

$$12a. \ x \cdot (y + z) = x \cdot y + x \cdot z$$

$$12b. \ x + y \cdot z = (x + y) \cdot (x + z)$$

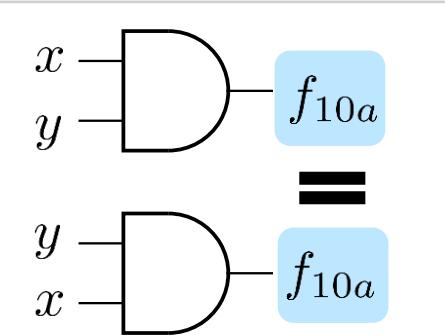
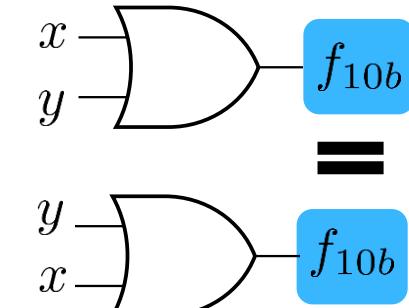
Two- and Three-Variable Properties

Analogy with Logic Gates

Commutative

$$10a. \ x \cdot y = y \cdot x$$

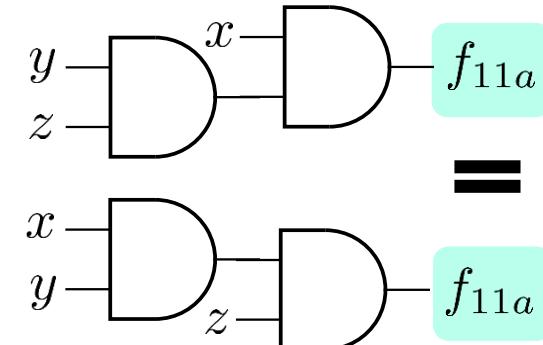
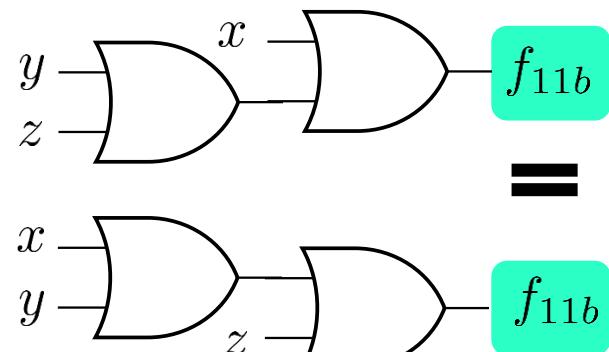
$$10b. \ x + y = y + x$$



Associative

$$11a. \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

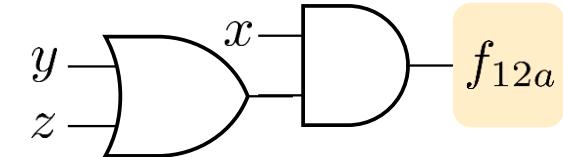
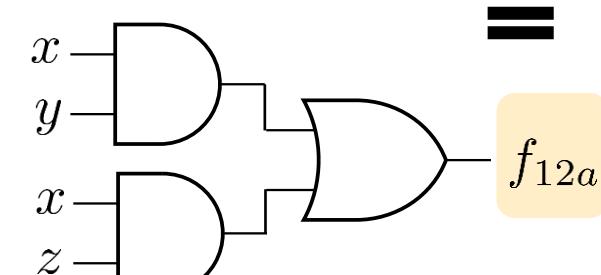
$$11b. \ x + (y + z) = (x + y) + z$$



Distributive

$$12a. \ x \cdot (y + z) = x \cdot y + x \cdot z$$

$$12b. \ x + y \cdot z = (x + y) \cdot (x + z)$$



Checking the Validity of a Logic Equation

Using Boolean Algebra

- Let us prove the validity of the following logic equation

$$(x_1 + x_3)(\overline{x_1} + \overline{x_3}) = x_1\overline{x_3} + \overline{x_1}x_3$$

Distributive

$$12a. x \cdot (y + z) = x \cdot y + x \cdot z$$

$$12b. x + y \cdot z = (x + y) \cdot (x + z)$$

$$8a. x \cdot \bar{x} = 0$$

$$8b. x + \bar{x} = 1$$

$$6a. x \cdot 1 = x$$

$$6b. x + 0 = x$$

Commutative

$$10a. x \cdot y = y \cdot x$$

$$10b. x + y = y + x$$

Checking the Validity of a Logic Equation

Without truth tables and Venn diagrams

- Let us prove the validity of the following logic equation

$$(x_1 + x_3)(\overline{x_1} + \overline{x_3}) = x_1\overline{x_3} + \overline{x_1}x_3$$

Distributive

$$12a. x \cdot (y + z) = x \cdot y + x \cdot z$$

$$12b. x + y \cdot z = (x + y) \cdot (x + z)$$

- Let us manipulate the left-hand side (LHS)

$$\begin{aligned} \text{LHS} &= (x_1 + x_3)(\overline{x_1} + \overline{x_3}) \\ (12a) &= (x_1 + x_3)\overline{x_1} + (x_1 + x_3)\overline{x_3} \\ (12a) &= x_1\overline{x_1} + x_3\overline{x_1} + x_1\overline{x_3} + x_3\overline{x_3} \\ (8a) &= 0 + x_3\overline{x_1} + x_1\overline{x_3} + 0 \\ (6b) &= x_3\overline{x_1} + x_1\overline{x_3} \\ (10a, 10b) &= x_1\overline{x_3} + \overline{x_1}x_3 \end{aligned}$$

$$8a. x \cdot \bar{x} = 0$$

$$8b. x + \bar{x} = 1$$

$$6a. x \cdot 1 = x$$

$$6b. x + 0 = x$$

Commutative

$$10a. x \cdot y = y \cdot x$$

$$10b. x + y = y + x$$

- The result is exactly the right-hand side (RHS)

What's the Point...?

... of Axioms, Theorems, Properties

- A: The purpose of the axioms, theorems, and properties in Boolean Algebra is to perform algebraic transformations to do
 - **Check for equivalence**
 - Find if two logical expressions (i.e., logical circuits made of gates) are equivalent (i.e., perform the same functionality) without evaluating all input possibilities
 - **Design efficient circuits**
 - Simplify the logical expression to find a potentially more efficient equivalent variant (i.e., design a circuit of the same desired functionality but with fewer gates)

Two- and Three-Variable Properties, Contd.

Boolean Algebra

- Given three Boolean variables, the following properties hold

Absorption (covering)

$$13a. \ x + x \cdot y = x$$
$$13b. \ x \cdot (x + y) = x$$

Combining

$$14a. \ x \cdot y + x \cdot \bar{y} = x$$
$$14b. \ (x + y) \cdot (x + \bar{y}) = x$$

DeMorgan's theorem

$$15a. \ \overline{x \cdot y} = \overline{x} + \overline{y}$$
$$15b. \ \overline{x + y} = \overline{x} \cdot \overline{y}$$

Redundancy

$$16a. \ x + \bar{x} \cdot y = x + y$$
$$16b. \ x \cdot (\bar{x} + y) = x \cdot y$$

Consensus

$$17a. \ x \cdot y + y \cdot z + \bar{x} \cdot z = x \cdot y + \bar{x} \cdot z$$
$$17b. \ (x + y) \cdot (y + z) \cdot (\bar{x} + z) = (x + y) \cdot (\bar{x} + z)$$

Checking the Validity of a Logic Equation

Without truth tables and Venn diagrams

- Prove the validity of the following logic equation

$$x_1\bar{x_3} + \bar{x_2}\bar{x_3} + x_1x_3 + \bar{x_2}x_3 = \bar{x_1}\bar{x_2} + x_1x_2 + x_1\bar{x_2}$$

- The **left-hand** side manipulation

$$\text{LHS} = x_1\bar{x_3} + \bar{x_2}\bar{x_3} + x_1x_3 + \bar{x_2}x_3$$

$$(10b) = x_1\bar{x_3} + x_1x_3 + \bar{x_2}\bar{x_3} + \bar{x_2}x_3$$

$$(12a) = x_1(\bar{x_3} + x_3) + \bar{x_2}(\bar{x_3} + x_3)$$

$$(8b) = x_1 \cdot 1 + \bar{x_2} \cdot 1$$

$$(6a) = x_1 + \bar{x_2}$$

Commutative

$$10a. \ x \cdot y = y \cdot x$$

$$10b. \ x + y = y + x$$

Distributive

$$12a. \ x \cdot (y + z) = x \cdot y + x \cdot z$$

$$12b. \ x + y \cdot z = (x + y) \cdot (x + z)$$

$$8a. \ x \cdot \bar{x} = 0$$

$$8b. \ x + \bar{x} = 1$$

$$6a. \ x \cdot 1 = x$$

$$6b. \ x + 0 = x$$

Checking the Validity of a Logic Equation

Without truth tables and Venn diagrams

- Prove the validity of the following logic equation

$$x_1\bar{x_3} + \bar{x_2} \bar{x_3} + x_1x_3 + \bar{x_2}x_3 = \bar{x_1} \bar{x_2} + x_1x_2 + x_1\bar{x_2}$$

- The **right-hand** side manipulation

$$\text{RHS} = \bar{x_1} \bar{x_2} + x_1x_2 + x_1\bar{x_2}$$

$$(12a) = \bar{x_1} \bar{x_2} + x_1(x_2 + \bar{x_2})$$

$$(8b) = \bar{x_1} \bar{x_2} + x_1 \cdot 1$$

$$(6a) = \bar{x_1} \bar{x_2} + x_1$$

$$(10b) = x_1 + \cancel{x_1} \cancel{x_2}$$

$$(16a) = x_1 + \bar{x_2}$$

Commutative

$$10a. \ x \cdot y = y \cdot x$$

$$10b. \ x + y = y + x$$

Distributive

$$12a. \ x \cdot (y + z) = x \cdot y + x \cdot z$$

$$12b. \ x + y \cdot z = (x + y) \cdot (x + z)$$

$$8a. \ x \cdot \bar{x} = 0$$

$$8b. \ x + \bar{x} = 1$$

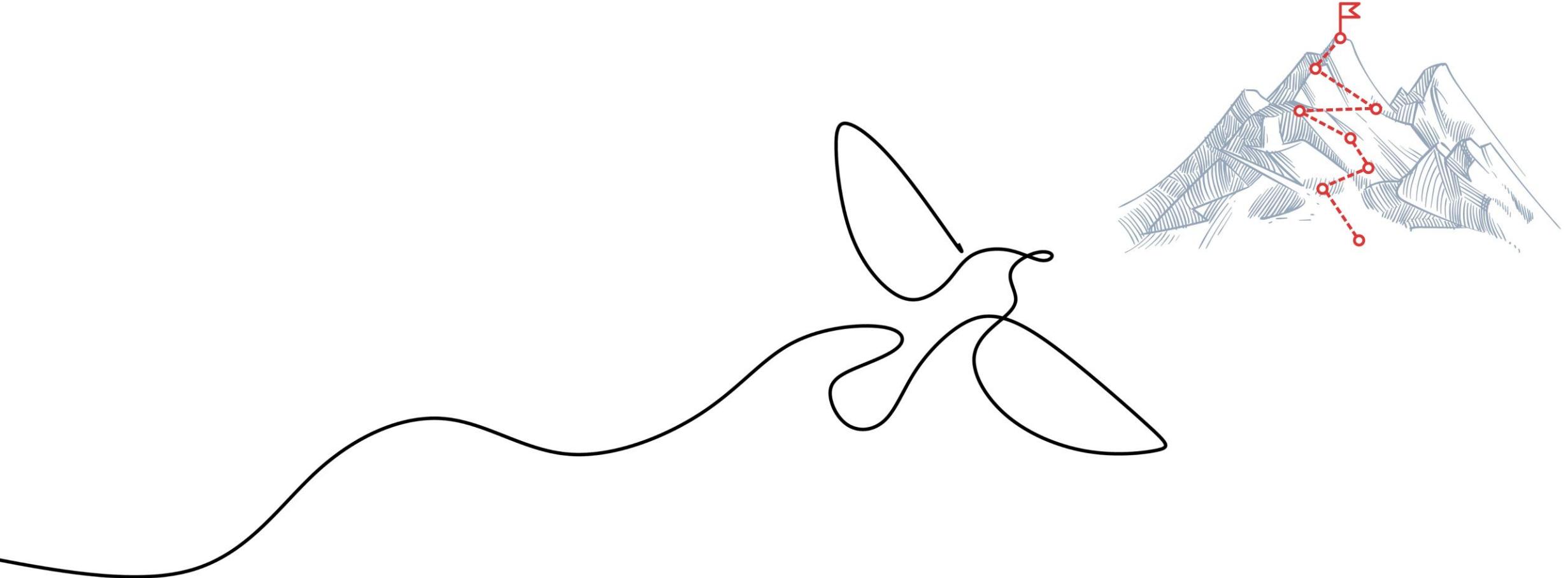
Redundancy

$$16a. \ x + \bar{x} \cdot y = x + y$$

$$16b. \ x \cdot (\bar{x} + y) = x \cdot y$$

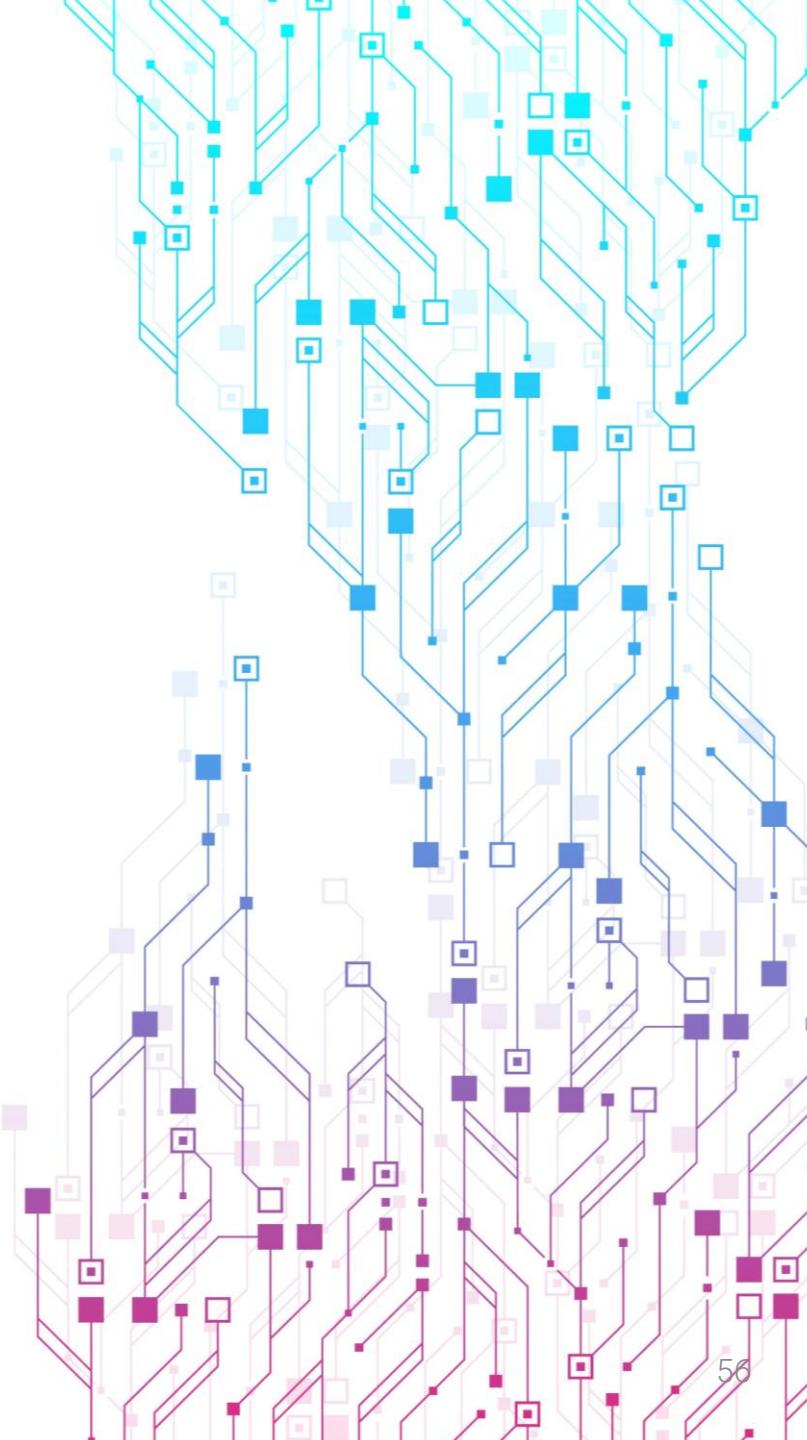
$$6a. \ x \cdot 1 = x$$

$$6b. \ x + 0 = x$$



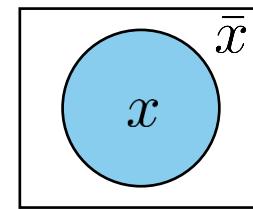
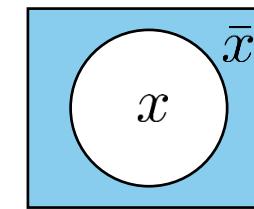
The Venn Diagram

Two networks are equivalent if their Venn diagrams are the same



The Venn Diagram

- Provides a graphical illustration of various operations and relations in the algebra of sets
- Popularized by John Venn (1834–1923) in the 1880s



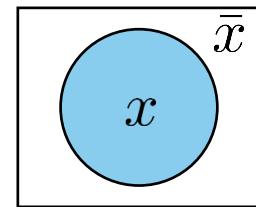
The Venn Diagram

Shades and Contours

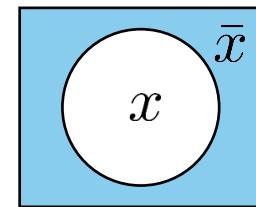
- In the diagram, the elements of a set are represented by the area enclosed by a **contour of a circle**
 - Shaded area where the **logical function** value = binary 1
 - The area within the contour: **variable** value = binary 1
 - The area outside the contour: **variable** value = binary 0

Constant 1

Constant 0



$f(x) = x$



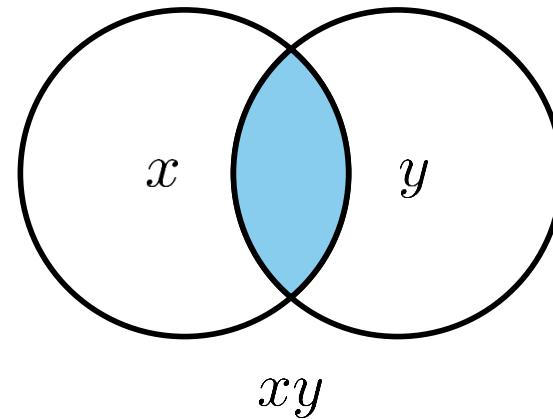
$f(x) = \bar{x}$

- The **union** of the shaded areas corresponds to the logical expression

The Venn Diagram

Simple Intersection

- *Reminder:* The union of the shaded areas corresponds to the logical expression (shaded when the expression is binary 1)
- Q: What is the corresponding logical expression?

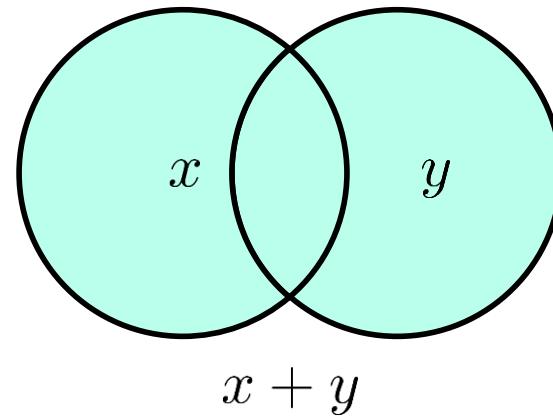


- A: **AND** (intersection; both variables = 1)

The Venn Diagram

Simple Union

- *Reminder:* The union of the shaded areas corresponds to the logical expression (shaded when the expression is binary 1)
- Q: What is the corresponding logical expression?

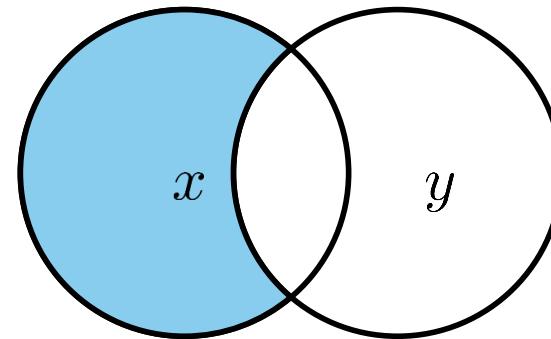


- A: **OR** (union; either variable = 1)

The Venn Diagram

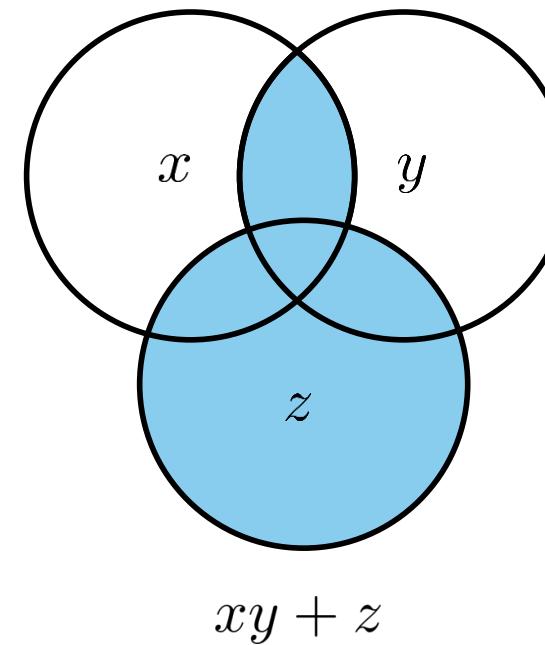
Flipped Task: Draw It

- *Reminder:* The union of the shaded areas corresponds to the logical expression (shaded when the expression is binary 1)
- Q: Show $x\bar{y}$, i.e., the intersection of
 - The region $x = 1$ and
 - The region $y = 0$
- A:

 $x\bar{y}$

The Venn Diagram, Contd.

- *Reminder:* The union of the shaded areas corresponds to the logical expression (shaded when the expression is binary 1)
- Q: Show $xy + z$, i.e., the union of
 - Intersection $x = 1, y = 1$ and
 - The region $z = 1$
- A:

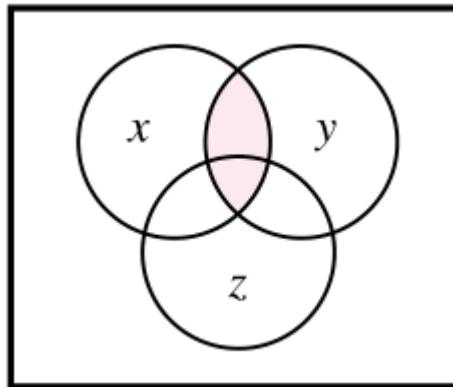


Network Equivalence Verification

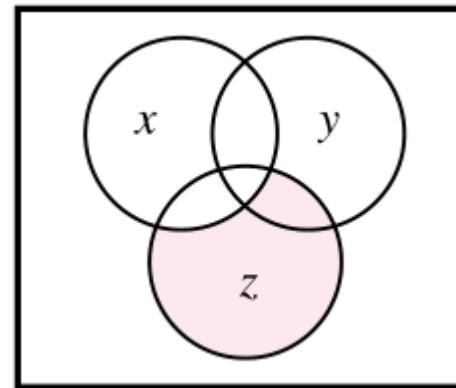
Venn Diagram Approach

$$xy + \bar{x}z + yz \stackrel{?}{=} xy + \bar{x}z$$

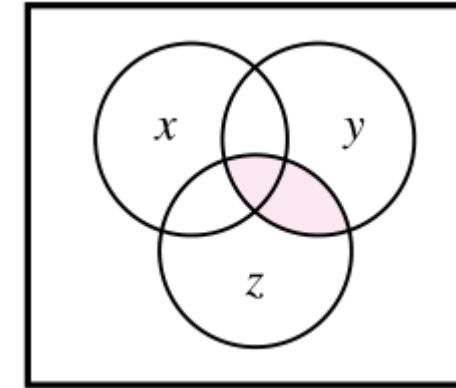
EXAMPLES



xy



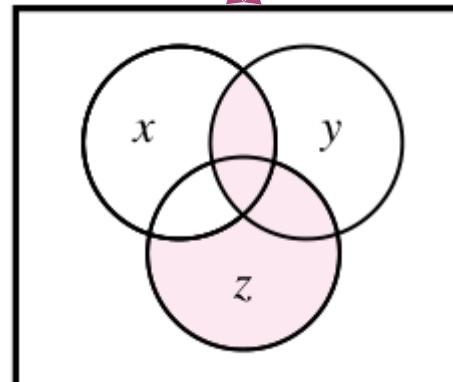
$\bar{x}z$



yz

- Left-hand side

$$xy + \bar{x}z + yz$$

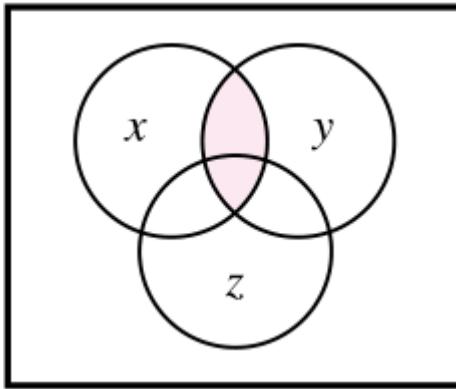


Network Equivalence Verification

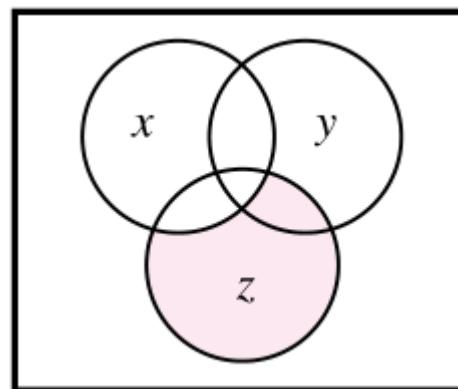
Venn Diagram Approach

$$xy + \bar{x}z + yz \stackrel{?}{=} xy + \bar{x}z$$

EXAMPLES



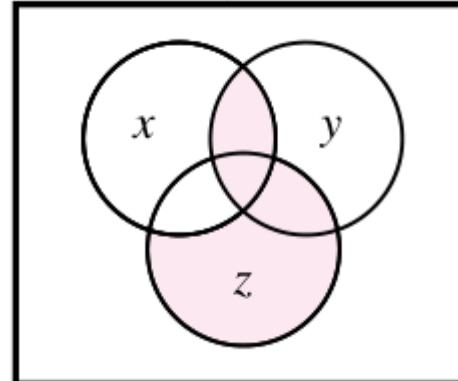
xy



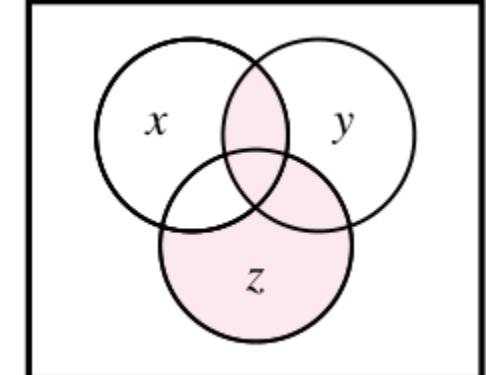
$\bar{x}z$

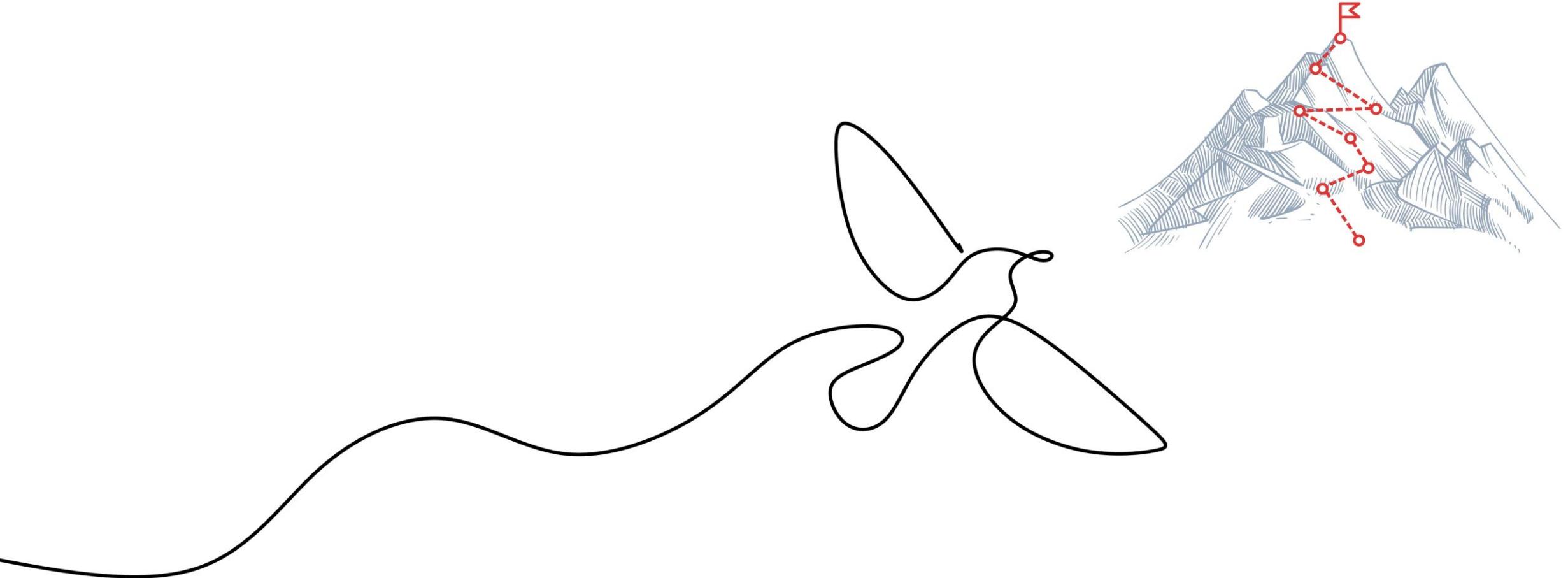
- Right-hand side

$xy + \bar{x}z$

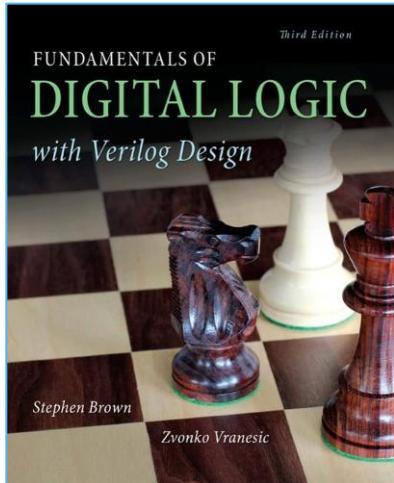


$xy + \bar{x}z + yz$

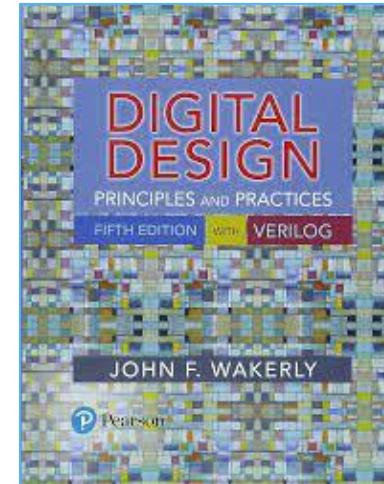




Literature



- Chapter 2: Introduction to Logic Circuits
 - 2.1-2.5



- Chapter 1: Introduction
 - 1.5
- Chapter 3: Switching Algebra and Combinational Logic
 - 3.1.1-3.1.3